SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodium-ion and lithium-ion batteries

被引:111
作者
Zhang, Zhian [1 ]
Zhao, Xingxing [1 ]
Li, Jie [1 ]
机构
[1] Cent S Univ, Sch Met & Environm, Changsha 410083, Hunan, Peoples R China
关键词
Sodium-ion batteries; Lithium-ion batteries; Anode materials; Tin selenide; LI-ION; RECHARGEABLE LITHIUM; HIGH-CAPACITY; ELECTRODE MATERIALS; SHELL MICROSPHERES; LOW-COST; PERFORMANCE; COMPOSITE; CHALLENGES;
D O I
10.1016/j.electacta.2015.07.140
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A homogeneous nanocomposite of SnSe and carbon black, denoted as SnSe/C nanocomposite, was fabricated by high energy ball milling and empolyed as a high performance anode material for both sodium-ion batteries and lithium-ion batteries. The X-ray diffraction patterns, scanning electron microscopy and transmission electron microscopy observations confirmed that SnSe in SnSe/C nanocomposite was homogeneously distributed within carbon black. The nanocomposite anode exhibited enhanced electrochemical performances including a high capacity, long cycling behavior and good rate performance in both sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs). In SIBs, an initial capacitiy of 748.5 mAh g(-1) was obtained and was maintained well on cycling (324.9 mAh g(-1) at a high current density of 500 mA g(-1) in the 200 th cycle) with 72.5% retention of second cycle capacity (447.7 mAh g(-1)). In LIBs, high initial capacities of approximately 1097.6 mAh g(-1) was obtained, and this reduced to 633.1 mAh g(-1) after 100 cycles at 500 mA g(-1). (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1296 / 1301
页数:6
相关论文
共 37 条
[1]   AlSb thin films as negative electrodes for Li-ion and Na-ion batteries [J].
Baggetto, Loic ;
Marszewski, Michal ;
Gorka, Joanna ;
Jaroniec, Mietek ;
Veith, Gabriel M. .
JOURNAL OF POWER SOURCES, 2013, 243 :699-705
[2]   Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries [J].
Bi, Zhonghe ;
Paranthaman, M. Parans ;
Menchhofer, Paul A. ;
Dehoff, Ryan R. ;
Bridges, Craig A. ;
Chi, Miaofang ;
Guo, Bingkun ;
Sun, Xiao-Guang ;
Dai, Sheng .
JOURNAL OF POWER SOURCES, 2013, 222 :461-466
[3]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[4]   SnSe2 nanoplate-graphene composites as anode materials for lithium ion batteries [J].
Choi, Jaewon ;
Jin, Jaewon ;
Jung, Il Gu ;
Kim, Jung Min ;
Kim, Hae Jin ;
Son, Seung Uk .
CHEMICAL COMMUNICATIONS, 2011, 47 (18) :5241-5243
[5]   MoS2/Graphene Composite Paper for Sodium-Ion Battery Electrodes [J].
David, Lamuel ;
Bhandavat, Romil ;
Singh, Gurpreet .
ACS NANO, 2014, 8 (02) :1759-1770
[6]   Co3S4 porous nanosheets embedded in graphene sheets as high-performance anode materials for lithium and sodium storage [J].
Du, Yichen ;
Zhu, Xiaoshu ;
Zhou, Xiaosi ;
Hu, Lingyun ;
Dai, Zhihui ;
Bao, Jianchun .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (13) :6787-6791
[7]   Positive Electrode Materials for Li-Ion and Li-Batteries [J].
Ellis, Brian L. ;
Lee, Kyu Tae ;
Nazar, Linda F. .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :691-714
[8]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176
[9]   Transition metal oxides for high performance sodium ion battery anodes [J].
Jiang, Yinzhu ;
Hu, Meijuan ;
Zhang, Dan ;
Yuan, Tianzhi ;
Sun, Wenping ;
Xu, Ben ;
Yan, Mi .
NANO ENERGY, 2014, 5 :60-66
[10]   Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries [J].
Kim, Sung-Wook ;
Seo, Dong-Hwa ;
Ma, Xiaohua ;
Ceder, Gerbrand ;
Kang, Kisuk .
ADVANCED ENERGY MATERIALS, 2012, 2 (07) :710-721