Direct electrophoretic deposition of an ultra-strong separator on an anode in a surfactant-free colloidal system for lithium ion batteries

被引:32
作者
Han, Yupei [1 ]
Ye, Luhan [2 ]
Boateng, Bismark [1 ]
Sun, Qingwei [1 ]
Zhen, Cheng [1 ]
Chen, Ning [1 ]
Shi, Xingyi [1 ]
Dickerson, James H. [3 ]
Li, Xin [2 ]
He, Weidong [1 ,4 ,5 ]
机构
[1] Univ Elect Sci & Technol China, Sch Phys, Chengdu 611731, Sichuan, Peoples R China
[2] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Brown Univ, Dept Phys, Providence, RI 02912 USA
[4] Harbin Inst Technol, Natl Key Lab Sci & Technol Adv Composites Special, Harbin 150080, Heilongjiang, Peoples R China
[5] Harbin Inst Technol, Ctr Composite Mat & Struct, Harbin 150080, Heilongjiang, Peoples R China
关键词
GEL POLYMER ELECTROLYTE; PHASE-SEPARATION; MEMBRANES; PVDF; COMPOSITE; CONDUCTIVITY; SUPERCAPACITORS; PERFORMANCE; FABRICATION; CATHODE;
D O I
10.1039/c8ta09092k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A hierarchically laminated nanostructured PVdF-HFP membrane is deposited directly on a carbon anode through efficient, scalable electrophoretic deposition (EPD) in a surfactant-free colloidal system. Lithium ion batteries based on the separator-anode configuration have a well-structured microscopic interface with uniform, reinforced separator/electrode contact. The resulting separator enables a high ionic conductivity of 8.1 x 10(-4) S cm(-1), and exhibits a low thermal shrinkage of 3% after annealing at 160 degrees C for 5 h, a high isotropic mechanical strength (approximate to 33 MPa) and an ultra-high ductility (approximate to 450%). The battery with the separator-anode configuration delivers a discharge capacity of 370 mA h g(-1) (99.5% of the theoretical capacity) at 0.1C, an excellent capacity retention of approximate to 100% after 300 cycles, and a pronounced rate capability of 270 mA h g(-1) at 1C. This work opens up the opportunity to realize both reliable and high-capacity material platforms for next-generation lithium ion batteries.
引用
收藏
页码:1410 / 1417
页数:8
相关论文
共 53 条
[1]   Underwater superoleophobic cellulose/electrospun PVDF-HFP membranes for efficient oil/water separation [J].
Ahmed, Farah Ejaz ;
Lalia, Boor Singh ;
Hilal, Nidal ;
Hashaikeh, Raed .
DESALINATION, 2014, 344 :48-54
[2]  
[Anonymous], 2012, Electrophoretic Deposition of Nanomaterials
[3]   On the Interpretation of Measured Impedance Spectra of Insertion Cathodes for Lithium-Ion Batteries [J].
Atebamba, Jean-Marcel ;
Moskon, Joze ;
Pejovnik, Stane ;
Gaberscek, Miran .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (11) :A1218-A1228
[4]   A review on fundamentals and applications of electrophoretic deposition (EPD) [J].
Besra, Laxmidhar ;
Liu, Meilin .
PROGRESS IN MATERIALS SCIENCE, 2007, 52 (01) :1-61
[5]   DLS and zeta potential - What they are and what they are not? [J].
Bhattacharjee, Sourav .
JOURNAL OF CONTROLLED RELEASE, 2016, 235 :337-351
[6]   Vibrational spectrum of PVDF and its interpretation [J].
Bormashenko, Y ;
Pogreb, R ;
Stanevsky, O ;
Bormashenko, E .
POLYMER TESTING, 2004, 23 (07) :791-796
[7]   A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR [J].
Cai, Xiaomei ;
Lei, Tingping ;
Sun, Daoheng ;
Lin, Liwei .
RSC ADVANCES, 2017, 7 (25) :15382-15389
[8]   Structure and ionic conductivity of porous polymer electrolytes based on PVDF-HFP copolymer membranes [J].
Cao, Jian-Hua ;
Zhu, Bao-Ku ;
Xu, You-Yi .
JOURNAL OF MEMBRANE SCIENCE, 2006, 281 (1-2) :446-453
[9]   An electrospun poly(vinylidene fluoride) nanofibrous membrane and its battery applications [J].
Choi, SW ;
Jo, SM ;
Lee, WS ;
Kim, YR .
ADVANCED MATERIALS, 2003, 15 (23) :2027-2032
[10]   Poly(vinylidene fluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems [J].
Costa, C. M. ;
Gomez Ribelles, J. L. ;
Lanceros-Mendez, S. ;
Appetecchi, G. B. ;
Scrosati, B. .
JOURNAL OF POWER SOURCES, 2014, 245 :779-786