Reconstructing cosmological initial conditions from galaxy peculiar velocities - I. Reverse Zeldovich Approximation

被引:49
作者
Doumler, Timur [1 ,2 ]
Hoffman, Yehuda [3 ]
Courtois, Helene [1 ]
Gottloeber, Stefan [2 ]
机构
[1] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Lyon, France
[2] Leibniz Inst Astrophys Potsdam, D-14482 Potsdam, Germany
[3] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
基金
以色列科学基金会;
关键词
methods: numerical; galaxies: haloes; cosmology: theory; dark matter; large-scale structure of Universe; LARGE-SCALE STRUCTURE; GAUSSIAN RANDOM-FIELDS; DARK-MATTER HALOES; LOCAL UNIVERSE; CONSTRAINED SIMULATIONS; WIENER RECONSTRUCTION; GRAVITATIONAL-INSTABILITY; DENSITY PERTURBATIONS; REDSHIFT SURVEYS; FLUCTUATIONS;
D O I
10.1093/mnras/sts613
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose a new method to recover the cosmological initial conditions of the presently observed galaxy distribution, which can serve to run constrained simulations of the Local Universe. Our method, the Reverse Zeldovich Approximation (RZA), can be applied to radial galaxy peculiar velocity data and extends the previously used constrained realizations (CR) method by adding a Lagrangian reconstruction step. The RZA method consists of applying the Zeldovich approximation in reverse to galaxy peculiar velocities to estimate the cosmic displacement field and the initial linear matter distribution from which the present-day Local Universe evolved. We test our method with a mock survey taken from a cosmological simulation. We show that the halo peculiar velocities at z = 0 are close to the linear prediction of the Zeldovich approximation, if a grouping is applied to the data to remove virial motions. We find that the addition of RZA to the CR method significantly improves the reconstruction of the initial conditions. The RZA is able to recover the correct initial positions of the velocity tracers with a median error of only 1.36 Mpc h(-1) in our test simulation. For realistic sparse and noisy data, this median increases to 5Mpc h(-1). This is a significant improvement over the previous approach of neglecting the displacement field, which introduces errors on a scale of 10 Mpc h(-1) or even higher. Applying the RZA method to the upcoming high-quality observational peculiar velocity catalogues will generate much more precise constrained simulations of the Local Universe.
引用
收藏
页码:888 / 901
页数:14
相关论文
共 69 条
  • [1] PATH INTEGRAL METHODS FOR PRIMORDIAL DENSITY PERTURBATIONS - SAMPLING OF CONSTRAINED GAUSSIAN RANDOM-FIELDS
    BERTSCHINGER, E
    [J]. ASTROPHYSICAL JOURNAL, 1987, 323 (02) : L103 - L106
  • [2] GAUSSIAN RANDOM-FIELDS IN SPHERICAL COORDINATES
    BINNEY, J
    QUINN, T
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1991, 249 (04) : 678 - 683
  • [3] Nonlinear constrained realizations of the large-scale structure
    Bistolas, V
    Hoffman, Y
    [J]. ASTROPHYSICAL JOURNAL, 1998, 492 (02) : 439 - 451
  • [4] BOUCHET FR, 1995, ASTRON ASTROPHYS, V296, P575
  • [5] Reconstruction of the early Universe as a convex optimization problem
    Brenier, Y
    Frisch, U
    Hénon, M
    Loeper, G
    Matarrese, S
    Mohayaee, R
    Sobolevskii, A
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 346 (02) : 501 - 524
  • [6] BUCHERT T, 1994, ASTRON ASTROPHYS, V288, P349
  • [7] Cosmic Flows surveys and CLUES simulations
    Courtois, H. M.
    Tully, R. B.
    [J]. ASTRONOMISCHE NACHRICHTEN, 2012, 333 (5-6) : 436 - 440
  • [8] COSMICFLOWS-2: TYPE Ia SUPERNOVA CALIBRATION AND H0
    Courtois, Helene M.
    Tully, R. Brent
    [J]. ASTROPHYSICAL JOURNAL, 2012, 749 (02)
  • [9] THREE-DIMENSIONAL VELOCITY AND DENSITY RECONSTRUCTIONS OF THE LOCAL UNIVERSE WITH COSMICFLOWS-1
    Courtois, Helene M.
    Hoffman, Yehuda
    Tully, R. Brent
    Gottloeber, Stefan
    [J]. ASTROPHYSICAL JOURNAL, 2012, 744 (01)
  • [10] Cosmic flows: University of Hawaii 2.2-m I-band photometry
    Courtois, Helene M.
    Tully, R. Brent
    Heraudeau, Philippe
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 415 (02) : 1935 - 1942