ON THE POLYNOMIAL SZEMEREDI THEOREM IN FINITE FIELDS

被引:22
作者
Peluse, Sarah [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
DIFFERENCE SETS; PROGRESSIONS; SEQUENCES; PROOF;
D O I
10.1215/00127094-2018-0051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P-1, . . . , P-m is an element of Z[y] be any linearly independent polynomials with zero constant term. We show that there exists gamma > 0 such that any subset of Fq of size at least q(1-gamma) contains a nontrivial polynomial progression x, x + P-1 (y), . . . , x + P-m (y), provided that the characteristic of F-q is large enough.
引用
收藏
页码:749 / 774
页数:26
相关论文
共 19 条
[1]   DIFFERENCE SETS WITHOUT KAPPA-TH POWERS [J].
BALOG, A ;
PELIKAN, J ;
PINTZ, J ;
SZEMEREDI, E .
ACTA MATHEMATICA HUNGARICA, 1994, 65 (02) :165-187
[2]   Polynomial extensions of van der Waerden's and Szemeredi's theorems [J].
Bergelson, V ;
Leibman, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (03) :725-753
[3]   Nonlinear Roth type theorems in finite fields [J].
Bourgain, J. ;
Chang, M. -C. .
ISRAEL JOURNAL OF MATHEMATICS, 2017, 221 (02) :853-867
[4]  
DONG D., ARXIV170900080V3MATH
[5]   LINEAR FORMS AND QUADRATIC UNIFORMITY FOR FUNCTIONS ON ZN [J].
Gowers, W. T. ;
Wolf, J. .
JOURNAL D ANALYSE MATHEMATIQUE, 2011, 115 :121-186
[6]   LINEAR FORMS AND QUADRATIC UNIFORMITY FOR FUNCTIONS ON Fpn [J].
Gowers, W. T. ;
Wolf, J. .
MATHEMATIKA, 2011, 57 (02) :215-237
[7]  
Gowers WT, 2011, GEOM FUNCT ANAL, V21, P36, DOI 10.1007/s00039-010-0106-3
[8]   Decompositions, approximate structure, transference, and the Hahn-Banach theorem [J].
Gowers, W. T. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2010, 42 :573-606
[9]   A new proof of Szemeredi's theorem [J].
Gowers, WT .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (03) :465-588
[10]   A new proof of Szemeredi's theorem for arithmetic progressions of length four [J].
Gowers, WT .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1998, 8 (03) :529-551