Sierpinski and non-Sierpinski curve Julia sets in families of rational maps

被引:9
作者
Steinmetz, Norbert [1 ]
机构
[1] Tech Univ TU Dortmund, Fak Math, D-44221 Dortmund, Germany
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2008年 / 78卷
关键词
D O I
10.1112/jlms/jdn030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss the dynamics as well as the structure of the parameter plane of certain families of rational maps with few critical orbits. Our paradigm is the family R-t(z) = t(1 + (4/27) z(3)/(1 - z)), with dynamics governed by the behaviour of the postcritical orbit (R-t(n) (t))(n is an element of N). In particular, it is shown that if t escapes (that is, R-t(n) (t) tends to infinity), then the Julia set of Rt is a Cantor set, or a Sierpinski curve, or a curve with one or else infinitely many cut-points; each of these cases actually occurs.
引用
收藏
页码:290 / 304
页数:15
相关论文
共 18 条
[1]  
[Anonymous], 2000, COMPLEX VAR THEORY A, DOI DOI 10.1080/17476930008815244.MR1760168
[2]  
BLANCHARD P, 2003, SIERPINSKI ESCAPE CA
[3]  
Busse N., 1992, THESIS DORTMUND
[4]  
Caratheodory C, 1998, CONFORMAL REPRESENTA
[5]  
DEVANEY RL, 2005, MYRIAD SIERPINSKI CU
[6]  
DEVANEY RL, 2005, CRITERION SIERPINSKI
[7]  
DOUADY A, 1982, CR ACAD SCI I-MATH, V294, P123
[8]  
Douady A, 1982, SEMINAIRE BOURBAKI, V599, P39
[9]  
MANE R, 1983, ANN SCI ECOLE NORM S, V16, P193
[10]  
McMullen C. T., 2000, LONDON MATH SOC LECT