A constraint-based model of Scheffersomyces stipitis for improved ethanol production

被引:23
作者
Liu, Ting [1 ,2 ]
Zou, Wei [1 ,2 ]
Liu, Liming [1 ]
Chen, Jian [1 ,2 ]
机构
[1] Jiangnan Univ, State Key Lab Food Sci & Technol, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Minist Educ, Key Lab Ind Biotechnol, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Scheffersomyces stipitis; Genome-scale metabolic model; Constraint-based simulation; Xylose utilization; Ethanol production; XYLOSE-FERMENTING YEAST; PICHIA-STIPITIS; METABOLIC RECONSTRUCTION; PHYLOGENETIC ANALYSIS; D-XYLULOKINASE; FERMENTATION; GENOME; GLUCOSE; OXYGENATION; FRAMEWORK;
D O I
10.1186/1754-6834-5-72
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: As one of the best xylose utilization microorganisms, Scheffersomyces stipitis exhibits great potential for the efficient lignocellulosic biomass fermentation. Therefore, a comprehensive understanding of its unique physiological and metabolic characteristics is required to further improve its performance on cellulosic ethanol production. Results: A constraint-based genome-scale metabolic model for S. stipitis CBS 6054 was developed on the basis of its genomic, transcriptomic and literature information. The model iTL885 consists of 885 genes, 870 metabolites, and 1240 reactions. During the reconstruction process, 36 putative sugar transporters were reannotated and the metabolisms of 7 sugars were illuminated. Essentiality study was conducted to predict essential genes on different growth media. Key factors affecting cell growth and ethanol formation were investigated by the use of constraint-based analysis. Furthermore, the uptake systems and metabolic routes of xylose were elucidated, and the optimization strategies for the overproduction of ethanol were proposed from both genetic and environmental perspectives. Conclusions: Systems biology modelling has proven to be a powerful tool for targeting metabolic changes. Thus, this systematic investigation of the metabolism of S. stipitis could be used as a starting point for future experiment designs aimed at identifying the metabolic bottlenecks of this important yeast.
引用
收藏
页数:11
相关论文
共 60 条
  • [1] Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis
    Agbogbo, Frank K.
    Coward-Kelly, Guillermo
    [J]. BIOTECHNOLOGY LETTERS, 2008, 30 (09) : 1515 - 1524
  • [2] Fermentation of glucose/xylose mixtures using Pichia stipitis
    Agbogbo, Frank K.
    Coward-Kelly, Guillermo
    Torry-Smith, Mads
    Wenger, Kevin S.
    [J]. PROCESS BIOCHEMISTRY, 2006, 41 (11) : 2333 - 2336
  • [3] Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential?
    Alper, Hal
    Stephanopoulos, Gregory
    [J]. NATURE REVIEWS MICROBIOLOGY, 2009, 7 (10) : 715 - 723
  • [4] Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger
    Andersen, Mikael Rordam
    Nielsen, Michael Lynge
    Nielsen, Jens
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2008, 4 (1) : 178
  • [5] The Universal Protein Resource (UniProt) in 2010
    Apweiler, Rolf
    Martin, Maria Jesus
    O'Donovan, Claire
    Magrane, Michele
    Alam-Faruque, Yasmin
    Antunes, Ricardo
    Barrell, Daniel
    Bely, Benoit
    Bingley, Mark
    Binns, David
    Bower, Lawrence
    Browne, Paul
    Chan, Wei Mun
    Dimmer, Emily
    Eberhardt, Ruth
    Fedotov, Alexander
    Foulger, Rebecca
    Garavelli, John
    Huntley, Rachael
    Jacobsen, Julius
    Kleen, Michael
    Laiho, Kati
    Leinonen, Rasko
    Legge, Duncan
    Lin, Quan
    Liu, Wudong
    Luo, Jie
    Orchard, Sandra
    Patient, Samuel
    Poggioli, Diego
    Pruess, Manuela
    Corbett, Matt
    di Martino, Giuseppe
    Donnelly, Mike
    van Rensburg, Pieter
    Bairoch, Amos
    Bougueleret, Lydie
    Xenarios, Ioannis
    Altairac, Severine
    Auchincloss, Andrea
    Argoud-Puy, Ghislaine
    Axelsen, Kristian
    Baratin, Delphine
    Blatter, Marie-Claude
    Boeckmann, Brigitte
    Bolleman, Jerven
    Bollondi, Laurent
    Boutet, Emmanuel
    Quintaje, Silvia Braconi
    Breuza, Lionel
    [J]. NUCLEIC ACIDS RESEARCH, 2010, 38 : D142 - D148
  • [6] Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis
    Balagurunathan, Balaji
    Jonnalagadda, Sudhakar
    Tan, Lily
    Srinivasan, Rajagopalan
    [J]. MICROBIAL CELL FACTORIES, 2012, 11
  • [7] Progress in bioethanol processing
    Balat, Mustafa
    Balat, Havva
    Oz, Cahide
    [J]. PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2008, 34 (05) : 551 - 573
  • [8] Recent trends in global production and utilization of bio-ethanol fuel
    Balat, Mustafa
    Balat, Havva
    [J]. APPLIED ENERGY, 2009, 86 (11) : 2273 - 2282
  • [9] OptKnock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
    Burgard, AP
    Pharkya, P
    Maranas, CD
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2003, 84 (06) : 647 - 657
  • [10] The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases
    Caspi, Ron
    Altman, Tomer
    Dreher, Kate
    Fulcher, Carol A.
    Subhraveti, Pallavi
    Keseler, Ingrid M.
    Kothari, Anamika
    Krummenacker, Markus
    Latendresse, Mario
    Mueller, Lukas A.
    Ong, Quang
    Paley, Suzanne
    Pujar, Anuradha
    Shearer, Alexander G.
    Travers, Michael
    Weerasinghe, Deepika
    Zhang, Peifen
    Karp, Peter D.
    [J]. NUCLEIC ACIDS RESEARCH, 2012, 40 (D1) : D742 - D753