Lumping Techniques for Mixed Finite Element Diffusion Discretizations

被引:3
作者
Maginot, P. G. [1 ]
Brunner, T. A. [1 ]
机构
[1] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA
关键词
Diffusion; high-order; lumping; mixed finite element; positivity; TRANSPORT; SOLVER;
D O I
10.1080/23324309.2018.1461653
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are interested in positivity preserving spatial discretizations applicable to arbitrary order mixed finite element spatial discretizations of the radiative diffusion equations. Though not guaranteed to yield strict positivity, matrix lumping is appealing as a method of increasing solution positivity because unlike ad hoc fixups or strictly non-negative, non-linear solution representations, matrix lumping keeps the mixed finite element diffusion equations as a linear system of equations. Self-lumping schemes have previously been shown to be a generalization of more traditional matrix lumping techniques. Self-lumping schemes restrict integration quadrature points to the interpolation points used to define interpolatory finite element basis functions. As shown previously, the positivity and order of accuracy of self-lumping schemes are directly related to the choice of finite element interpolation point. In this work, we develop self-lumping schemes for arbitrary order, mixed finite element spatial discretizations of the diffusion equation in Cartesian geometry. After introducing several possible self-lumping schemes appropriate for mixed finite elements, we test the ability of each scheme to increase solution positivity relative to an unlumped discretization using a simple test problem designed to induce negative solutions, evaluating efficacy as a function of finite element order and finite element interpolation point type. The method of manufactured solutions is then used to evaluate order of convergence for promising self-lumping schemes.
引用
收藏
页码:301 / 325
页数:25
相关论文
共 50 条
  • [21] A mixed finite element solver for natural convection in porous media using automated solution techniques
    Zhang, Chao
    Zarrouk, Sadiq J.
    Archer, Rosalind
    [J]. COMPUTERS & GEOSCIENCES, 2016, 96 : 181 - 192
  • [22] Finite element microstructural homogenization techniques and intergranular, intragranular microstructural effects on effective diffusion coefficient of heterogeneous polycrystalline composite media
    Jothi, S.
    Croft, T. N.
    Brown, S. G. R.
    de Souza Neto, E. A.
    [J]. COMPOSITE STRUCTURES, 2014, 108 : 555 - 564
  • [23] Error analysis for discretizations of parabolic problems using continuous finite elements in time and mixed finite elements in space
    Bause, Markus
    Radu, Florin A.
    Koecher, Uwe
    [J]. NUMERISCHE MATHEMATIK, 2017, 137 (04) : 773 - 818
  • [24] Convergence of an upwind control-volume mixed finite element method for convection-diffusion problems
    Rui, H.
    [J]. COMPUTING, 2007, 81 (04) : 297 - 315
  • [25] Finite element simulation of diffusion into polycrystalline materials
    Gryaznov, D.
    Fleig, J.
    Maier, J.
    [J]. SOLID STATE SCIENCES, 2008, 10 (06) : 754 - 760
  • [26] Finite Element Analysis of Hydrogen Diffusion in Materials
    Kanayama, Hiroshi
    Ndong-Mefane, Stephane
    Ogino, Masao
    [J]. EFFECTS OF HYDROGEN ON MATERIALS, 2009, : 580 - +
  • [27] A multipoint flux mixed finite element method
    Wheeler, Mary F.
    Yotov, Ivan
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (05) : 2082 - 2106
  • [28] Mixed finite element formulation for folded plates
    Eratli, N
    Aköz, AY
    [J]. STRUCTURAL ENGINEERING AND MECHANICS, 2002, 13 (02) : 155 - 170
  • [29] A multiscale mortar mixed finite element method
    Arbogast, Todd
    Pencheva, Gergina
    Wheeler, Mary F.
    Yotov, Ivan
    [J]. MULTISCALE MODELING & SIMULATION, 2007, 6 (01) : 319 - 346
  • [30] A COMPOSITE MIXED FINITE ELEMENT FOR HEXAHEDRAL GRIDS
    Sboui, Amel
    Jaffre, Jerome
    Roberts, Jean
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (04) : 2623 - 2645