Dickson's lemma and weak Ramsey theory

被引:0
作者
Omata, Yasuhiko [1 ]
Pelupessy, Florian [1 ]
机构
[1] Tohoku Univ, Math Inst, Aoba Ku, 6-3 Aramaki Aza Aoba, Sendai, Miyagi 9808578, Japan
关键词
Reverse mathematics; Ramsey theory; Dickson's lemma;
D O I
10.1007/s00153-018-0642-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We explore the connections between Dickson's lemma and weak Ramsey theory. We show that a weak version of the Paris-Harrington principle for pairs in c colors and miniaturized Dickson's lemma for c-tuples are equivalent over RCA(0)*. Furthermore, we look at a cascade of consequences for several variants of weak Ramsey's theorem.
引用
收藏
页码:413 / 425
页数:13
相关论文
共 16 条
[1]  
[Anonymous], PERSPECTIVES LOGIC
[2]   Sharp thresholds for hypergraph regressive Ramsey numbers [J].
Carlucci, Lorenzo ;
Lee, Gyesik ;
Weiermann, Andreas .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (02) :558-585
[3]   SOME BOUNDS FOR THE RAMSEY-PARIS-HARRINGTON NUMBERS [J].
ERDOS, P ;
MILLS, G .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1981, 30 (01) :53-70
[4]   Ackermannian and Primitive-Recursive Bounds with Dickson's Lemma [J].
Figueira, Diego ;
Figueira, Santiago ;
Schmitz, Sylvain ;
Schnoebelen, Philippe .
26TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2011), 2011, :269-278
[5]  
Friedman H. M., 2010, ADJACENT RAMSE UNPUB
[6]   INDEPENDENCE OF RAMSEY THEOREM VARIANTS USING ε0 [J].
Friedman, Harvey ;
Pelupessy, Florian .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (02) :853-860
[7]  
Gordan PA, 1899, NACHR GES WISS GO MP, V1899, P240
[8]   Phase transitions of iterated Higman-style well-partial-orderings [J].
Gordeev, Lev ;
Weiermann, Andreas .
ARCHIVE FOR MATHEMATICAL LOGIC, 2012, 51 (1-2) :127-161
[9]  
Hajek P., 1998, METAMATHEMATICS 1 OR
[10]   RAPIDLY GROWING RAMSEY FUNCTIONS [J].
KETONEN, J ;
SOLOVAY, R .
ANNALS OF MATHEMATICS, 1981, 113 (02) :267-314