On the Bicomplex Generalized Tribonacci Quaternions

被引:15
作者
Kizilates, Can [1 ]
Catarino, Paula [2 ]
Tuglu, Naim [3 ]
机构
[1] Zonguldak Bulent Ecevit Univ, Dept Math, Fac Art & Sci, TR-67100 Zonguldak, Turkey
[2] Univ Tras Os Montes & Alto Douro, Dept Math, P-5001801 Vila Real, Portugal
[3] Gazi Univ, Fac Sci, Dept Math, TR-06500 Ankara, Turkey
来源
MATHEMATICS | 2019年 / 7卷 / 01期
关键词
bicomplex number; generalized tribonacci sequence; bicomplex generalized tribonacci quaternion;
D O I
10.3390/math7010080
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the bicomplex generalized tribonacci quaternions. Furthermore, Binet's formula, generating functions, and the summation formula for this type of quaternion are given. Lastly, as an application, we present the determinant of a special matrix, and we show that the determinant is equal to the nth term of the bicomplex generalized tribonacci quaternions.
引用
收藏
页数:8
相关论文
共 30 条
[1]   Bicomplex Fibonacci quaternions [J].
Aydin, F. Torunbalci .
CHAOS SOLITONS & FRACTALS, 2018, 106 :147-153
[2]   A note on certainmatrices with h(x) - Fibonacci quaternion polynomials [J].
Catarino, P. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2016, 22 (02) :343-351
[3]   Bicomplex k-Pell Quaternions [J].
Catarino, Paula .
COMPUTATIONAL METHODS AND FUNCTION THEORY, 2019, 19 (01) :65-76
[4]   The Modified Pell and the Modified k-Pell Quaternions and Octonions [J].
Catarino, Paula .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (02) :577-590
[5]   A note on h(x) - Fibonacci quaternion polynomials [J].
Catarino, Paula .
CHAOS SOLITONS & FRACTALS, 2015, 77 :1-5
[6]  
Cerda-Morales G., 2018, ARXIV180603709V1
[7]   On a Generalization for Tribonacci Quaternions [J].
Cerda-Morales, Gamaliel .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (06)
[8]  
Didkivska TV., 2003, the World of Mathematics, V9, P29
[9]  
Luna-Elizarrarás ME, 2015, FRONT MATH, P5, DOI 10.1007/978-3-319-24868-4_2
[10]  
Feinberg M., 1963, Fibonacci Quart, V1.3, P71