The algebra of reversible Markov chains

被引:4
|
作者
Pistone, Giovanni [1 ]
Rogantin, Maria Piera [2 ]
机构
[1] Coll Carlo Alberto, I-10024 Moncalieri, Italy
[2] Univ Genoa, DIMA, I-16146 Genoa, Italy
关键词
Reversible Markov chain; Algebraic statistics; Toric ideal;
D O I
10.1007/s10463-012-0368-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a Markov chain, both the detailed balance condition and the cycle Kolmogorov condition are algebraic binomials. This remark suggests to study reversible Markov chains with the tool of Algebraic Statistics, such as toric statistical models. One of the results of this study is an algebraic parameterization of reversible Markov transitions and their invariant probability.
引用
收藏
页码:269 / 293
页数:25
相关论文
共 50 条
  • [31] The algebra of interpolatory cubature formulæ for generic nodes
    Claudia Fassino
    Giovanni Pistone
    Eva Riccomagno
    Statistics and Computing, 2014, 24 : 615 - 632
  • [32] Markov Bases: A 25 Year Update
    Almendra-Hernandez, Felix
    De Loera, Jesus A.
    Petrovic, Sonja
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (546) : 1671 - 1686
  • [33] Algebraic representations of Gaussian Markov combinations
    Massa, M. Sofia
    Riccomagno, Eva
    BERNOULLI, 2017, 23 (01) : 626 - 644
  • [34] Binary hidden Markov models and varieties
    Critch, Andrew
    JOURNAL OF ALGEBRAIC STATISTICS, 2013, 4 (01) : 1 - 30
  • [35] Discovery of statistical equivalence classes using computer algebra
    Goergen, Christiane
    Bigatti, Anna
    Riccomagno, Eva
    Smith, Jim Q.
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2018, 95 : 167 - 184
  • [36] Markov degree of configurations defined by fibers of a configuration
    Koyama, Takayuki
    Ogawa, Mitsunori
    Takemura, Akimichi
    JOURNAL OF ALGEBRAIC STATISTICS, 2015, 6 (02) : 80 - 107
  • [37] Phylogenetic ideals and varieties for the general Markov model
    Allman, Elizabeth S.
    Rhodes, John A.
    ADVANCES IN APPLIED MATHEMATICS, 2008, 40 (02) : 127 - 148
  • [38] When is Eaton's Markov chain irreducible?
    Hobert, James P.
    Tan, Aixin
    Liu, Ruitao
    BERNOULLI, 2007, 13 (03) : 641 - 652
  • [39] Analysis of the Weighted Kappa and Its Maximum with Markov Moves
    Fabio Rapallo
    Psychometrika, 2022, 87 : 1270 - 1289
  • [40] ANALYSIS OF THE WEIGHTED KAPPA AND ITS MAXIMUM WITH MARKOV MOVES
    Rapallo, Fabio
    PSYCHOMETRIKA, 2022, 87 (04) : 1270 - 1289