The effect of dislocation nature on the size effect in Indium Antimonide above and below the brittle-ductile transition

被引:3
作者
Wheeler, J. M. [1 ,2 ]
Thilly, L. [3 ]
Zou, Y. [1 ]
Morel, A. [2 ]
Raghavan, R. [2 ,4 ]
Michler, J. [2 ]
机构
[1] Swiss Fed Inst Technol, Lab Nanomet, Dept Mat Sci, Vladimir Prelog Weg 5, CH-8093 Zurich, Switzerland
[2] Empa, Swiss Fed Labs Mat Sci & Technol, Lab Mech Mat & Nanostruct, Feuerwerkerstr 39, CH-3602 Thun, Switzerland
[3] Univ Poitiers, Inst Pprime, CNRS, ENSMA,SP2MI, F-86962 Futuroscope, France
[4] Indian Inst Sci, Dept Mat Engn, Bangalore 560012, Karnataka, India
关键词
dislocations; strength; electronic material; microscale; 400; DEGREES-C; SINGLE-CRYSTALS; YIELD STRENGTH; STRAIN BURSTS; COMPRESSION; TEMPERATURE; PLASTICITY; MICROPILLARS; DEFORMATION; INDENTATION;
D O I
10.1557/adv.2019.369
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effect of length scale on mechanical strength is a significant consideration for semiconductor materials. In III-V semiconductors, such as InSb, a transition from partial to perfect dislocations occurs at the brittle-to-ductile transition temperature (similar to 150 degrees C for InSb). High temperature micro-compression reveals InSb to show a small size effect below the transition, similar to ceramics, while in the ductile regime it shows a size effect consistent with fcc metals. The source truncation model is found to agree with the observed trends in strength with size once the change in Burgers vector and bulk strength are taken into account.
引用
收藏
页码:1811 / 1818
页数:8
相关论文
共 37 条
[1]   Temperature-dependent size effects on the strength of Ta and W micropillars [J].
Abad, Oscar Torrents ;
Wheeler, Jeffrey M. ;
Michler, Johann ;
Schneider, Andreas S. ;
Arzt, Eduard .
ACTA MATERIALIA, 2016, 103 :483-494
[2]   Compressive strengths of molybdenum alloy micro-pillars prepared using a new technique [J].
Bei, H. ;
Shim, S. ;
George, E. P. ;
Miller, M. K. ;
Herbert, E. G. ;
Pharr, G. M. .
SCRIPTA MATERIALIA, 2007, 57 (05) :397-400
[3]  
Bolz R.E., 1973, CRC HDB TABLES APPL
[4]   Plasticity and Dislocation Dynamics in a Phase Field Crystal Model [J].
Chan, Pak Yuen ;
Tsekenis, Georgios ;
Dantzig, Jonathan ;
Dahmen, Karin A. ;
Goldenfeld, Nigel .
PHYSICAL REVIEW LETTERS, 2010, 105 (01)
[5]   Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries [J].
Chen, Hongning ;
Zou, Qingli ;
Liang, Zhuojian ;
Liu, Hao ;
Li, Quan ;
Lu, Yi-Chun .
NATURE COMMUNICATIONS, 2015, 6
[6]   Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale [J].
Csikor, Ferenc F. ;
Motz, Christian ;
Weygand, Daniel ;
Zaiser, Michael ;
Zapperi, Stefano .
SCIENCE, 2007, 318 (5848) :251-254
[7]   Micro-plasticity and intermittent dislocation activity in a simplified micro-structural model [J].
Derlet, P. M. ;
Maass, R. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2013, 21 (03)
[8]   Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect [J].
Greer, Julia R. ;
De Hosson, Jeff Th. M. .
PROGRESS IN MATERIALS SCIENCE, 2011, 56 (06) :654-724
[9]   Emergence of strain-rate sensitivity in Cu nanopillars: Transition from dislocation multiplication to dislocation nucleation [J].
Jennings, Andrew T. ;
Li, Ju ;
Greer, Julia R. .
ACTA MATERIALIA, 2011, 59 (14) :5627-5637
[10]   Plasticity of indium antimonide between-176 and 400 °C under pressure. Part I: Macroscopic aspects of the deformation [J].
Kedjar, B. ;
Thilly, L. ;
Demenet, J. -L. ;
Rabier, J. .
ACTA MATERIALIA, 2010, 58 (04) :1418-1425