Characterization of Classifier Performance on Left and Right Limb Motor Imagery using Support Vector Machine Classification of EEG signal for left and right limb movement

被引:0
作者
Singla, Shubham [1 ]
Garsha, S. N. [1 ]
Chatterjee, Somsirsa [2 ]
机构
[1] Amity Univ, Dept Elect & Commun Engn, ASET, Noida, India
[2] AdvenioIntelis, Res & Dev Wing, Chandigarh, India
来源
2016 5TH INTERNATIONAL CONFERENCE ON WIRELESS NETWORKS AND EMBEDDED SYSTEMS (WECON) | 2016年
关键词
Brain Computer Interface; Motor Imagery; EEG; PSD; Entropy; SVM;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work proposes an algorithm that automatically classifies electroencephalography(EEG) signal for movement of left and right hands using time domain and information theoretic features like Power Spectral Density (PSD) and Shannon Entropy with the use of support vector machine. Brain-computer interfacing (BCI) has gained momentumover the last few decades and has emerged as a promising field by providing a real time platformfor interaction between brain and automated devices which can be used for rehabilitative purposes. BCI provides considerable help in overcoming sensorimotor disabilities. The EEG recordings of left and right motorimagery are identical to the actual movement of the corresponding left and right limbs. Support Vector Machine (SVM) provides an accuracy of 91.25% thereby reaffirming its efficiency in classification of EEG signals.
引用
收藏
页码:205 / 208
页数:4
相关论文
共 11 条
  • [1] [Anonymous], ATLAS REGIONAL ANATO
  • [2] Dornhege G., 2007, Toward Brain-Computer Interfacing
  • [3] Geddes L. A., 1975, PRINCIPLES APPL BIOM, P411
  • [4] Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification
    Herman, Pawel
    Prasad, Girijesh
    McGinnity, Thomas Martin
    Coyle, Damien
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2008, 16 (04) : 317 - 326
  • [5] Hu J., 2009, INT J DIGITAL CONTEN, V3
  • [6] Klem G H, 1999, Electroencephalogr Clin Neurophysiol Suppl, V52, P3
  • [7] Kübler A, 2013, BRAIN-COMPUTER INTERFACE SYSTEMS - RECENT PROGRESS AND FUTURE PROSPECTS, P1, DOI 10.5772/55802
  • [8] Pfurscheller J., 2008, IEEE INTELLIGENT SYS
  • [9] Motor imagery and direct brain-computer communication
    Pfurtscheller, G
    Neuper, C
    [J]. PROCEEDINGS OF THE IEEE, 2001, 89 (07) : 1123 - 1134
  • [10] Steriade M., ELECTROENCEPHALOGRAP, V76, P481