Thermal conductivity of solid deuterium by the 3ω method

被引:2
作者
Gram, R. Q. [1 ]
She, A. [1 ]
Craxton, R. S. [1 ]
Harding, D. R. [1 ]
机构
[1] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA
关键词
FUSION EXPERIMENTS; TRITIUM; TARGET; HYDROGEN; HEAT; FOAM; FUEL;
D O I
10.1063/1.4739285
中图分类号
O59 [应用物理学];
学科分类号
摘要
The thermal conductivity of solid D-2 is measured by the 3 omega method, in which a wire embedded in the medium serves as both a heater and a temperature sensor. Conductivity values are obtained by fitting experimental data with a two-dimensional model that calculates heat flow in both the axial and radial directions as a function of frequency. The model provides the thermal conductivity of D-2 from the measurement of the 3 omega voltage and published values of specific heat and density of D-2 and of the sensor wire, and thermal conductivity values for the sensor wire. Data for D-2 gas and liquid are obtained for comparison to solid D-2. Conductivity values obtained for solid D-2 range from 0.35 +/- 0.01 W/(m K) at 18.6 K to 0.75 +/- 0.02 W/(m K) at 13.4 K and are the same for normal and ortho D-2. These values are acquired at lower temperatures than the 3 omega method has previously been used for. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4739285]
引用
收藏
页数:8
相关论文
共 50 条
[31]   Simultaneously estimating the thermal conductivity and thermal diffusivity of a poorly conducting solid material using single surface measurements [J].
Malheiros, Fernando Costa ;
Gomes do Nascimento, Jefferson ;
Fernandes, Ana Paula ;
Guimaraes, Gilmar .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2020, 91 (01)
[32]   Application of the Three-Omega Method to Measurement of Thermal Conductivity and Thermal Diffusivity of Hydrogen Gas [J].
Yusibani, E. ;
Woodfield, P. L. ;
Fujii, M. ;
Shinzato, K. ;
Zhang, X. ;
Takata, Y. .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2009, 30 (02) :397-415
[33]   Application of the Three-Omega Method to Measurement of Thermal Conductivity and Thermal Diffusivity of Hydrogen Gas [J].
E. Yusibani ;
P. L. Woodfield ;
M. Fujii ;
K. Shinzato ;
X. Zhang ;
Y. Takata .
International Journal of Thermophysics, 2009, 30 :397-415
[34]   Polymorphic transition of solid deuterium into broken symmetry phase: Application of Mayer group expansion method [J].
Yakub, E. S. .
LOW TEMPERATURE PHYSICS, 2024, 50 (11) :1037-1042
[35]   METHOD OF PREDICTION OF THERMAL CONDUCTIVITY COEFFICIENT OF WALL MATERIALS CONTAINING SALTS [J].
Kosior-Kazberuk, Marta ;
Ezerskiy, Valeriy .
JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 2011, 17 (01) :108-114
[36]   Investigation on the thermal conductivity of HDPE/MWCNT composites by laser pulse method [J].
Chen XinGui ;
He GuanHu ;
Du JinHong ;
Pei SongFeng ;
Guo JingDong .
SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES, 2009, 52 (09) :2767-2772
[37]   A Spherical Steady-State Method to Measure Soil Thermal Conductivity [J].
Mahdavi, S. M. ;
Neyshabouri, M. R. ;
Fujimaki, H. .
EURASIAN SOIL SCIENCE, 2019, 52 (12) :1572-1576
[38]   A thermo-optical plane source method to measure thermal conductivity [J].
Braun, Jeffrey L. ;
Baines, Bryan N. ;
Gaskins, John T. ;
Hopkins, Patrick E. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2025, 96 (07)
[39]   THERMAL CONDUCTIVITY OF HELIUM-3 BETWEEN 3 MK AND 300 K [J].
Huang, Y. H. ;
Fang, L. ;
Wang, X. J. ;
Wang, R. Z. ;
Xu, L. .
ADVANCES IN CRYOGENIC ENGINEERING, VOLS 57A AND 57B, 2012, 1434 :1849-1856
[40]   Thermal-Conductivity Measurements and Predictions for Ni-Cr Solid Solution Alloys [J].
Endo, Rie ;
Shima, Masaya ;
Susa, Masahiro .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2010, 31 (10) :1991-2003