Thermal conductivity of solid deuterium by the 3ω method

被引:2
作者
Gram, R. Q. [1 ]
She, A. [1 ]
Craxton, R. S. [1 ]
Harding, D. R. [1 ]
机构
[1] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA
关键词
FUSION EXPERIMENTS; TRITIUM; TARGET; HYDROGEN; HEAT; FOAM; FUEL;
D O I
10.1063/1.4739285
中图分类号
O59 [应用物理学];
学科分类号
摘要
The thermal conductivity of solid D-2 is measured by the 3 omega method, in which a wire embedded in the medium serves as both a heater and a temperature sensor. Conductivity values are obtained by fitting experimental data with a two-dimensional model that calculates heat flow in both the axial and radial directions as a function of frequency. The model provides the thermal conductivity of D-2 from the measurement of the 3 omega voltage and published values of specific heat and density of D-2 and of the sensor wire, and thermal conductivity values for the sensor wire. Data for D-2 gas and liquid are obtained for comparison to solid D-2. Conductivity values obtained for solid D-2 range from 0.35 +/- 0.01 W/(m K) at 18.6 K to 0.75 +/- 0.02 W/(m K) at 13.4 K and are the same for normal and ortho D-2. These values are acquired at lower temperatures than the 3 omega method has previously been used for. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4739285]
引用
收藏
页数:8
相关论文
共 50 条
  • [21] A new method for measuring the thermal conductivity of small insulating samples
    Jannot, Yves
    Schaefer, Sebastien
    Degiovanni, Alain
    Bianchin, Jeremy
    Fierro, Vanessa
    Celzard, Alain
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2019, 90 (05)
  • [22] Contact measurement of thermal conductivity and thermal diffusivity of solid materials: Experimental validation of feasibility with a prototype sensor
    Hadi, Syamsul
    Nishitani, Mamoru
    Wijayanta, Agung Tri
    Fukunaga, Takanobu
    Kurata, Kosaku
    Takamatsu, Hiroshi
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 69 : 256 - 263
  • [23] First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications
    Hu, S. X.
    Collins, L. A.
    Boehly, T. R.
    Kress, J. D.
    Goncharov, V. N.
    Skupsky, S.
    [J]. PHYSICAL REVIEW E, 2014, 89 (04)
  • [24] Thermal conductivity of (U,Pu,Np)O2 solid solutions
    Morimoto, Kyoichi
    Kato, Masato
    Ogasawara, Masahiro
    Kashimura, Motoaki
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2009, 389 (01) : 179 - 185
  • [25] Diffusion model of the thermal conductivity plateau of weak solid solutions of neon in parahydrogen
    Zholonko, N. N.
    [J]. LOW TEMPERATURE PHYSICS, 2013, 39 (06) : 561 - 564
  • [26] Direct measurement of in-plane thermal conductivity of microscale suspended thin films using a novel 3ω method
    Wang, Jianli
    Ren, Chao
    Ma, Saifei
    Xu, Rui
    Liu, Yi
    Zhang, Yanhui
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 219
  • [27] Effective Thermal-Conductivity Measurement on Germanate Glass-Ceramics Employing the 3ω Method at High Temperature
    Su, Guo-Ping
    Qiu, Lin
    Zheng, Xing-Hua
    Xiao, Zhuo-Hao
    Tang, Da-Wei
    [J]. INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2014, 35 (02) : 336 - 345
  • [28] Structural Stability of Solid Deuterium Films
    L. Fleischmann
    J. Bonn
    B. Degen
    M. Przyrembel
    E. W. Otten
    Ch. Weinheimer
    P. Leiderer
    [J]. Journal of Low Temperature Physics, 2000, 119 : 615 - 625
  • [29] Quantitative analysis on influencing factors for interface propagation-based thermal conductivity measurement method during solid-liquid transition
    Zhou Tian
    Ma Xiao
    Liu Xu
    Li Yuan
    [J]. JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2019, 26 (08) : 2041 - 2055
  • [30] Simultaneously estimating the thermal conductivity and thermal diffusivity of a poorly conducting solid material using single surface measurements
    Malheiros, Fernando Costa
    Gomes do Nascimento, Jefferson
    Fernandes, Ana Paula
    Guimaraes, Gilmar
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2020, 91 (01)