Interval observer design for LPV systems with parametric uncertainty

被引:122
作者
Wang, Yan [1 ]
Bevly, David M. [1 ]
Rajamani, Rajesh [2 ]
机构
[1] Auburn Univ, Dept Mech Engn, Auburn, AL 36849 USA
[2] Univ Minnesota, Dept Mech Engn, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Interval observer; Linear-parameter-varying (LPV) systems; Linear Matrix Inequalities (LMIs); Vehicle state estimation;
D O I
10.1016/j.automatica.2015.07.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Observer design for dynamical systems with both known and unknown time-varying parameters is of significant interest in a number of real-world applications. This class of systems has been rarely addressed in the existing literature. This paper develops an interval observer design methodology for linear parameter varying (LPV) systems with parametric uncertainty. With information on upper and lower bounds of the uncertain parameters, an interval observer that produces an envelope covering all possible state trajectories is presented. The application of the proposed algorithm in an important vehicle state estimation problem which aims at minimizing the worst-case envelope of the side-slip-angle estimate in the presence of uncertain tire cornering stiffness parameters and varying vehicle speed is presented. The obtained observer is evaluated in simulation using CarSim, a commercial industry-standard vehicle simulation software. The results verify the value of the developed observer design method. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:79 / 85
页数:7
相关论文
共 21 条
[1]  
Cheng C. H., 2008, P 47 IEEE C DEC CONT
[2]   Control of Nonlinear and LPV Systems: Interval Observer-Based Framework [J].
Efimov, Denis ;
Raissi, Tarek ;
Zolghadri, Ali .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (03) :773-778
[3]   Interval state observer for nonlinear time varying systems [J].
Efimov, Denis ;
Raissi, Tarek ;
Chebotarev, Stanislav ;
Zolghadri, Ali .
AUTOMATICA, 2013, 49 (01) :200-205
[4]  
Feron E., 1994, LINEAR MATRIX INEQUA
[5]   Interval observers for uncertain biological systems [J].
Gouzé, JL ;
Rapaport, A ;
Hadj-Sadok, MZ .
ECOLOGICAL MODELLING, 2000, 133 (1-2) :45-56
[6]  
Lorenzo Farina, 2000, Pure and applied mathematics: a wiley series of texts, monographs and tracts, V50, DOI 10.1002/9781118033029
[7]   Interval observers for linear time-invariant systems with disturbances [J].
Mazenc, Frederic ;
Bernard, Olivier .
AUTOMATICA, 2011, 47 (01) :140-147
[8]   Robust interval observers for global Lipschitz uncertain chaotic systems [J].
Moisan, Marcelo ;
Bernard, Olivier .
SYSTEMS & CONTROL LETTERS, 2010, 59 (11) :687-694
[9]   Near optimal interval observers bundle for uncertain bioreactors [J].
Moisan, Marcelo ;
Bernard, Olivier ;
Gouze, Jean-Luc .
AUTOMATICA, 2009, 45 (01) :291-295
[10]  
Nash S. G., 2008, LINEAR NONLINEAR OPT