Maximal, potential and singular operators in vanishing generalized Morrey spaces

被引:48
作者
Samko, Natasha [1 ,2 ]
机构
[1] Lulea Univ Technol, Lulea, Sweden
[2] Narvik Univ Coll, Narvik, Norway
关键词
Morrey spaces; Vanishing generalized Morrey spaces; Maximal operator; Singular operator; Potential operator; INTEGRAL-OPERATORS; WEIGHTED HARDY;
D O I
10.1007/s10898-012-9997-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We introduce vanishing generalized Morrey spaces with a general function defining the Morrey-type norm. Here is an arbitrary subset in Omega including the extremal cases and I = Omega, which allows to unify vanishing local and global Morrey spaces. In the spaces we prove the boundedness of a class of sublinear singular operators, which includes Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel. We also prove a Sobolev-Spanne type -theorem for the potential operator I (alpha) . The conditions for the boundedness are given in terms of Zygmund-type integral inequalities on . No monotonicity type condition is imposed on . In case has quasi- monotone properties, as a consequence of the main results, the conditions of the boundedness are also given in terms of the Matuszeska-Orlicz indices of the function . The proofs are based on pointwise estimates of the modulars defining the vanishing spaces.
引用
收藏
页码:1385 / 1399
页数:15
相关论文
共 36 条
[1]  
ADAMS DR, 1975, DUKE MATH J, V42, P765, DOI 10.1215/S0012-7094-75-04265-9
[2]  
[Anonymous], 2004, Fract. Calc. Appl. Anal.
[3]  
[Anonymous], 1983, MULTIPLE INTEGRALS C
[4]  
[Anonymous], 2001, Sci. Math. Jpn
[5]  
[Anonymous], 1965, Ann. Scuola Norm. Sup. Pisa
[6]  
Arai H, 1997, MATH NACHR, V185, P5
[7]  
Bari NK., 1956, Tr. Mosk. Mat. Obs, V5, P483
[8]   A GENERALIZATION OF A THEOREM BY MIRANDA,C. [J].
CHIARENZA, F ;
FRANCIOSI, M .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1992, 161 :285-297
[9]  
Chiarenza F., 1987, Rend. Mat., V7, P273
[10]  
Duoandikoetxea J., 2001, AM MATH SOC GRADUATE, V29