Use of Split Bregman denoising for iterative reconstruction in fluorescence diffuse optical tomography

被引:29
作者
Chamorro-Servent, Judit [1 ,2 ]
Abascal, Juan F. P. J. [1 ,2 ]
Aguirre, Juan [3 ]
Arridge, Simon [4 ]
Correia, Teresa [4 ]
Ripoll, Jorge [1 ,2 ]
Desco, Manuel [1 ,2 ,3 ]
Vaquero, Juan J. [1 ,2 ]
机构
[1] Univ Carlos III Madrid, Dept Bioingn & Ingn Aeroespacial, Leganes 28911, Spain
[2] Inst Invest Sanitaria Gregorio Maranon, Madrid 28007, Spain
[3] Ctr Invest Biomed Red Salud Mental, Madrid 28007, Spain
[4] Univ London Univ Coll, Dept Comp Sci, London WC1E 6BT, England
关键词
fluorescence; diffuse; optical; tomography; total variation; Split Bregman; shrinkage; algebraic reconstruction technique; TOTAL VARIATION REGULARIZATION; MEDIA; PHANTOM; LIGHT;
D O I
10.1117/1.JBO.18.7.076016
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Fluorescence diffuse optical tomography (fDOT) is a noninvasive imaging technique that makes it possible to quantify the spatial distribution of fluorescent tracers in small animals. fDOT image reconstruction is commonly performed by means of iterative methods such as the algebraic reconstruction technique (ART). The useful results yielded by more advanced l(1)-regularized techniques for signal recovery and image reconstruction, together with the recent publication of Split Bregman (SB) procedure, led us to propose a new approach to the fDOT inverse problem, namely, ART-SB. This method alternates a cost-efficient reconstruction step (ART iteration) with a denoising filtering step based on minimization of total variation of the image using the SB method, which can be solved efficiently and quickly. We applied this method to simulated and experimental fDOT data and found that ART-SB provides substantial benefits over conventional ART. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:8
相关论文
共 34 条
  • [1] Fluorescence diffuse optical tomography using the split Bregman method
    Abascal, J. F. P. -J.
    Chamorro-Servent, J.
    Aguirre, J.
    Arridge, S.
    Correia, T.
    Ripoll, J.
    Vaquero, J. J.
    Desco, M.
    [J]. MEDICAL PHYSICS, 2011, 38 (11) : 6275 - 6284
  • [2] [Anonymous], 1978, WAVE PROPAGATION SCA, DOI DOI 10.1016/B978-0-12-374701-3.X5001-7
  • [3] [Anonymous], 1902, PRINCETON U B
  • [4] Optical tomography: forward and inverse problems
    Arridge, Simon R.
    Schotland, John C.
    [J]. INVERSE PROBLEMS, 2009, 25 (12)
  • [5] Optical tomography in medical imaging
    Arridge, SR
    [J]. INVERSE PROBLEMS, 1999, 15 (02) : R41 - R93
  • [6] Total variation regularization for 3D reconstruction in fluorescence tomography: experimental phantom studies
    Behrooz, Ali
    Zhou, Hao-Min
    Eftekhar, Ali A.
    Adibi, Ali
    [J]. APPLIED OPTICS, 2012, 51 (34) : 8216 - 8227
  • [7] Boas D. A., 1996, DIFFUSION PHOTON PRO
  • [8] Born M., 1999, Principle of Optics
  • [9] Chamorro-Servent J., 2009, IEEE C NUCL SCI S ME, P2827
  • [10] Feasibility of U-curve method to select the regularization parameter for fluorescence diffuse optical tomography in phantom and small animal studies
    Chamorro-Servent, Judit
    Aguirre, Juan
    Ripoll, Jorge
    Jose Vaquero, Juan
    Desco, Manuel
    [J]. OPTICS EXPRESS, 2011, 19 (12): : 11490 - 11506