Detecting non-Abelian geometric phase in circuit QED

被引:0
作者
Peng, Man-Lv [1 ]
Zhou, Jian [1 ,2 ]
Xue, Zheng-Yuan [1 ]
机构
[1] S China Normal Univ, Sch Phys & Telecommun Engn, Lab Quantum Informat Technol, Guangzhou 510006, Guangdong, Peoples R China
[2] Anhui Xinhua Univ, Hefei 230088, Peoples R China
关键词
Non-Abelian geometric phase; Circuit QED; Transmon qubit; QUANTUM COMPUTATION; BERRYS PHASE;
D O I
10.1007/s11128-013-0560-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a scheme for detecting noncommutative feature of the non-Abelian geometric phase in circuit QED, which involves three transmon qubits capacitively coupled to an one-dimensional transmission line resonator. By controlling the external magnetic flux of the transmon qubits, we can obtain an effective tripod interaction of our circuit QED setup. The noncommutative feature of the non-Abelian geometric phase is manifested that for an initial state undergo two specific loops in different order will result in different final states. Our numerical calculations show that this difference can be unambiguously detected in the proposed system.
引用
收藏
页码:2739 / 2747
页数:9
相关论文
共 50 条
[41]   Non-abelian statistics of Majorana modes and the applications to topological quantum computation [J].
He Ying-Ping ;
Hong Jian-Song ;
Liu Xiong-Jun .
ACTA PHYSICA SINICA, 2020, 69 (11)
[42]   Optical rotation of heavy hole spins by non-Abelian geometrical means [J].
Sun, Hui ;
Feng, Xun-Li ;
Wu, Chunfeng ;
Liu, Jin-Ming ;
Gong, Shangqing ;
Oh, C. H. .
PHYSICAL REVIEW B, 2009, 80 (23)
[43]   Scalable geometric quantum computing with Cooper-pair box qubits in circuit QED [J].
Feng, Zhi-Bo ;
Zhang, Chun-Li .
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2010, 470 (03) :240-243
[44]   Control of Entanglement and Non-classical Effects in Circuit QED [J].
Ji, Yinghua .
2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2015, :2009-2012
[45]   Geometric Phase of a Transmon in a Dissipative Quantum Circuit [J].
Viotti, Ludmila ;
Lombardo, Fernando C. ;
Villar, Paula I. .
ENTROPY, 2024, 26 (01)
[46]   Collective states of interacting D(D3) non-Abelian anyons [J].
Finch, Peter E. ;
Frahm, Holger .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2012,
[48]   Graph gauge theory of mobile non-Abelian anyons in a qubit stabilizer code [J].
Lensky, Yuri D. ;
Kechedzhi, Kostyantyn ;
Aleiner, Igor ;
Kim, Eun-Ah .
ANNALS OF PHYSICS, 2023, 452
[49]   Demonstrating non-Abelian braiding of surface code defects in a five qubit experiment [J].
Wootton, James R. .
QUANTUM SCIENCE AND TECHNOLOGY, 2017, 2 (01)
[50]   Experimental state control by fast non-Abelian holonomic gates with a superconducting qutrit [J].
Danilin, S. ;
Vepsalainen, A. ;
Paraoanu, G. S. .
PHYSICA SCRIPTA, 2018, 93 (05)