Detecting non-Abelian geometric phase in circuit QED

被引:0
作者
Peng, Man-Lv [1 ]
Zhou, Jian [1 ,2 ]
Xue, Zheng-Yuan [1 ]
机构
[1] S China Normal Univ, Sch Phys & Telecommun Engn, Lab Quantum Informat Technol, Guangzhou 510006, Guangdong, Peoples R China
[2] Anhui Xinhua Univ, Hefei 230088, Peoples R China
关键词
Non-Abelian geometric phase; Circuit QED; Transmon qubit; QUANTUM COMPUTATION; BERRYS PHASE;
D O I
10.1007/s11128-013-0560-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a scheme for detecting noncommutative feature of the non-Abelian geometric phase in circuit QED, which involves three transmon qubits capacitively coupled to an one-dimensional transmission line resonator. By controlling the external magnetic flux of the transmon qubits, we can obtain an effective tripod interaction of our circuit QED setup. The noncommutative feature of the non-Abelian geometric phase is manifested that for an initial state undergo two specific loops in different order will result in different final states. Our numerical calculations show that this difference can be unambiguously detected in the proposed system.
引用
收藏
页码:2739 / 2747
页数:9
相关论文
共 50 条
[31]   Generalized Kitaev Models and Extrinsic Non-Abelian Twist Defects [J].
Barkeshli, Maissam ;
Jiang, Hong-Chen ;
Thomale, Ronny ;
Qi, Xiao-Liang .
PHYSICAL REVIEW LETTERS, 2015, 114 (02)
[32]   Non-Abelian fusion rules from Abelian systems with SPT phases and graph topological order [J].
de Resende, M. F. Araujo ;
Jimenez, J. P. Ibieta ;
Espiro, J. Lorca .
ANNALS OF PHYSICS, 2022, 446
[33]   Regulation of Entanglement and Geometric Quantum Discord of Hybrid Superconducting Qubits for Circuit QED [J].
Ji, Ying-Hua ;
Liu, Yong-Mei .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (09) :3220-3228
[34]   Regulation of Entanglement and Geometric Quantum Discord of Hybrid Superconducting Qubits for Circuit QED [J].
Ying-Hua Ji ;
Yong-Mei Liu .
International Journal of Theoretical Physics, 2013, 52 :3220-3228
[35]   Ground-state phase diagram for a system of interacting, D(D3) non-Abelian anyons [J].
Finch, P. E. ;
Frahm, H. ;
Links, J. .
NUCLEAR PHYSICS B, 2011, 844 (01) :129-145
[36]   Demonstrating non-Abelian statistics of Majorana fermions using twist defects [J].
Zheng, Huaixiu ;
Dua, Arpit ;
Jiang, Liang .
PHYSICAL REVIEW B, 2015, 92 (24)
[37]   Non-Abelian Majorana Modes Protected by an Emergent Second Chern Number [J].
Chan, Cheung ;
Liu, Xiong-Jun .
PHYSICAL REVIEW LETTERS, 2017, 118 (20)
[38]   Projective non-Abelian statistics of dislocation defects in a ZN rotor model [J].
You, Yi-Zhuang ;
Wen, Xiao-Gang .
PHYSICAL REVIEW B, 2012, 86 (16)
[39]   Non-Abelian topological order and anyons on a trapped-ion processor [J].
Iqbal, Mohsin ;
Tantivasadakarn, Nathanan ;
Verresen, Ruben ;
Campbell, Sara L. ;
Dreiling, Joan M. ;
Figgatt, Caroline ;
Gaebler, John P. ;
Johansen, Jacob ;
Mills, Michael ;
Moses, Steven A. ;
Pino, Juan M. ;
Ransford, Anthony ;
Rowe, Mary ;
Siegfried, Peter ;
Stutz, Russell P. ;
Foss-Feig, Michael ;
Vishwanath, Ashvin ;
Dreyer, Henrik .
NATURE, 2024, 626 (7999) :505-511
[40]   Digital Simulation of Projective Non-Abelian Anyons with 68 Superconducting Qubits [J].
Xu, Shibo ;
Sun, Zheng-Zhi ;
Wang, Ke ;
Xiang, Liang ;
Bao, Zehang ;
Zhu, Zitian ;
Shen, Fanhao ;
Song, Zixuan ;
Zhang, Pengfei ;
Ren, Wenhui ;
Zhang, Xu ;
Dong, Hang ;
Deng, Jinfeng ;
Chen, Jiachen ;
Wu, Yaozu ;
Tan, Ziqi ;
Gao, Yu ;
Jin, Feitong ;
Zhu, Xuhao ;
Zhang, Chuanyu ;
Wang, Ning ;
Zou, Yiren ;
Zhong, Jiarun ;
Zhang, Aosai ;
Li, Weikang ;
Jiang, Wenjie ;
Yu, Li-Wei ;
Yao, Yunyan ;
Wang, Zhen ;
Li, Hekang ;
Guo, Qiujiang ;
Song, Chao ;
Wang, H. ;
Deng, Dong-Ling .
CHINESE PHYSICS LETTERS, 2023, 40 (06)