Detecting non-Abelian geometric phase in circuit QED

被引:0
作者
Peng, Man-Lv [1 ]
Zhou, Jian [1 ,2 ]
Xue, Zheng-Yuan [1 ]
机构
[1] S China Normal Univ, Sch Phys & Telecommun Engn, Lab Quantum Informat Technol, Guangzhou 510006, Guangdong, Peoples R China
[2] Anhui Xinhua Univ, Hefei 230088, Peoples R China
关键词
Non-Abelian geometric phase; Circuit QED; Transmon qubit; QUANTUM COMPUTATION; BERRYS PHASE;
D O I
10.1007/s11128-013-0560-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a scheme for detecting noncommutative feature of the non-Abelian geometric phase in circuit QED, which involves three transmon qubits capacitively coupled to an one-dimensional transmission line resonator. By controlling the external magnetic flux of the transmon qubits, we can obtain an effective tripod interaction of our circuit QED setup. The noncommutative feature of the non-Abelian geometric phase is manifested that for an initial state undergo two specific loops in different order will result in different final states. Our numerical calculations show that this difference can be unambiguously detected in the proposed system.
引用
收藏
页码:2739 / 2747
页数:9
相关论文
共 50 条
[21]   A proposal to demonstrate non-abelian anyons on a NISQ device [J].
Jovanovic, Jovan ;
Wille, Carolin ;
Timmers, Daan ;
Simon, Steven H. .
QUANTUM, 2024, 8
[22]   Non-Abelian braiding of graph vertices in a superconducting processor [J].
Andersen, T. I. ;
Lensky, Y. D. ;
Kechedzhi, K. ;
Drozdov, I. K. ;
Bengtsson, A. ;
Hong, S. ;
Morvan, A. ;
Mi, X. ;
Opremcak, A. ;
Acharya, R. ;
Allen, R. ;
Ansmann, M. ;
Arute, F. ;
Arya, K. ;
Asfaw, A. ;
Atalaya, J. ;
Babbush, R. ;
Bacon, D. ;
Bardin, J. C. ;
Bortoli, G. ;
Bourassa, A. ;
Bovaird, J. ;
Brill, L. ;
Broughton, M. ;
Buckley, B. B. ;
Buell, D. A. ;
Burger, T. ;
Burkett, B. ;
Bushnell, N. ;
Chen, Z. ;
Chiaro, B. ;
Chik, D. ;
Chou, C. ;
Cogan, J. ;
Collins, R. ;
Conner, P. ;
Courtney, W. ;
Crook, A. L. ;
Curtin, B. ;
Debroy, D. M. ;
Del Toro Barba, A. ;
Demura, S. ;
Dunsworth, A. ;
Eppens, D. ;
Erickson, C. ;
Faoro, L. ;
Farhi, E. ;
Fatemi, R. ;
Ferreira, V. S. ;
Burgos, L. F. .
NATURE, 2023, 618 (7964) :264-+
[23]   Toward quantum simulating non-Abelian gauge theories [J].
Raychowdhury, Indrakshi .
INDIAN JOURNAL OF PHYSICS, 2021, 95 (08) :1681-1690
[24]   Braiding of non-Abelian anyons using pairwise interactions [J].
Burrello, M. ;
van Heck, B. ;
Akhmerov, A. R. .
PHYSICAL REVIEW A, 2013, 87 (02)
[25]   Majorana Fermions and Non-Abelian Statistics in Three Dimensions [J].
Teo, Jeffrey C. Y. ;
Kane, C. L. .
PHYSICAL REVIEW LETTERS, 2010, 104 (04)
[26]   Non-Abelian statistics of vortices with multiple Majorana fermions [J].
Hirono, Yuji ;
Yasui, Shigehiro ;
Itakura, Kazunori ;
Nitta, Muneto .
PHYSICAL REVIEW B, 2012, 86 (01)
[27]   Fast geometric gate operation of superconducting charge qubits in circuit QED [J].
Zheng-Yuan Xue .
Quantum Information Processing, 2012, 11 :1381-1388
[28]   Designer non-Abelian anyon platforms: from Majorana to Fibonacci [J].
Alicea, Jason ;
Stern, Ady .
PHYSICA SCRIPTA, 2015, T164
[29]   Nonadiabatic effects in the braiding of non-Abelian anyons in topological superconductors [J].
Cheng, Meng ;
Galitski, Victor ;
Das Sarma, S. .
PHYSICAL REVIEW B, 2011, 84 (10)
[30]   Measurement of non-Abelian gauge fields using multiloop amplification [J].
Lv, Qing-Xian ;
Liu, Hong-Zhi ;
Du, Yan-Xiong ;
Chen, Lin-Qing ;
Wang, Meng ;
Liang, Jia-Hao ;
Fu, Zhao-Xin ;
Chen, Zi-Yuan ;
Yan, Hui ;
Zhu, Shi-Liang .
PHYSICAL REVIEW A, 2023, 108 (02)