Detecting non-Abelian geometric phase in circuit QED

被引:0
|
作者
Peng, Man-Lv [1 ]
Zhou, Jian [1 ,2 ]
Xue, Zheng-Yuan [1 ]
机构
[1] S China Normal Univ, Sch Phys & Telecommun Engn, Lab Quantum Informat Technol, Guangzhou 510006, Guangdong, Peoples R China
[2] Anhui Xinhua Univ, Hefei 230088, Peoples R China
关键词
Non-Abelian geometric phase; Circuit QED; Transmon qubit; QUANTUM COMPUTATION; BERRYS PHASE;
D O I
10.1007/s11128-013-0560-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a scheme for detecting noncommutative feature of the non-Abelian geometric phase in circuit QED, which involves three transmon qubits capacitively coupled to an one-dimensional transmission line resonator. By controlling the external magnetic flux of the transmon qubits, we can obtain an effective tripod interaction of our circuit QED setup. The noncommutative feature of the non-Abelian geometric phase is manifested that for an initial state undergo two specific loops in different order will result in different final states. Our numerical calculations show that this difference can be unambiguously detected in the proposed system.
引用
收藏
页码:2739 / 2747
页数:9
相关论文
共 50 条
  • [1] Detecting non-Abelian geometric phase in circuit QED
    Man-Lv Peng
    Jian Zhou
    Zheng-Yuan Xue
    Quantum Information Processing, 2013, 12 : 2739 - 2747
  • [2] Detecting non-Abelian geometric phases with superconducting nanocircuits
    Feng, Zhi-Bo
    Zhang, Yuan-Min
    Wang, Guo-Zhi
    Han, Hongpei
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2009, 41 (10) : 1859 - 1863
  • [3] Non-Abelian Geometric Dephasing
    Snizhko, Kyrylo
    Egger, Reinhold
    Gefen, Yuval
    PHYSICAL REVIEW LETTERS, 2019, 123 (06)
  • [4] Non-Abelian geometric phase in the diamond nitrogen-vacancy center
    Kowarsky, Mark A.
    Hollenberg, Lloyd C. L.
    Martin, Andrew M.
    PHYSICAL REVIEW A, 2014, 90 (04):
  • [5] Experimental realization of non-Abelian non-adiabatic geometric gates
    Abdumalikov, A. A., Jr.
    Fink, J. M.
    Juliusson, K.
    Pechal, M.
    Berger, S.
    Wallraff, A.
    Filipp, S.
    NATURE, 2013, 496 (7446) : 482 - 485
  • [6] Generation of non-Abelian geometric phases in degenerate atomic transitions
    Simeonov, Lachezar S.
    Vitanov, Nikolay V.
    PHYSICAL REVIEW A, 2017, 96 (03)
  • [7] Non-Abelian adiabatic geometric transformations in a cold strontium gas
    Leroux, F.
    Pandey, K.
    Rehbi, R.
    Chevy, F.
    Miniatura, C.
    Gremaud, B.
    Wilkowski, D.
    NATURE COMMUNICATIONS, 2018, 9
  • [8] Non-Abelian geometric phases in ground-state Josephson devices
    Pirkkalainen, J-M
    Solinas, P.
    Pekola, J. P.
    Mottonen, M.
    PHYSICAL REVIEW B, 2010, 81 (17):
  • [9] Demonstration of the Holonomically Controlled Non-Abelian Geometric Phase in a Three-Qubit System of a Nitrogen Vacancy Center
    Bhattacharyya, Shaman
    Bhattacharyya, Somnath
    ENTROPY, 2022, 24 (11)
  • [10] Shortcuts to non-Abelian braiding
    Karzig, Torsten
    Pientka, Falko
    Refael, Gil
    von Oppen, Felix
    PHYSICAL REVIEW B, 2015, 91 (20):