2mit, an Intronic Gene of Drosophila melanogaster timeless2, Is Involved in Behavioral Plasticity

被引:7
作者
Baggio, Francesca [1 ]
Bozzato, Andrea [1 ]
Benna, Clara [1 ]
Leonardi, Emanuela [1 ]
Romoli, Ottavia [1 ]
Cognolato, Moira [1 ]
Tosatto, Silvio C. E. [1 ]
Costa, Rodolfo [1 ]
Sandrelli, Federica [1 ]
机构
[1] Univ Padua, Dipartimento Biol, Padua, Italy
关键词
LEUCINE-RICH REPEAT; DEPENDENT PROTEIN-KINASE; MUSHROOM BODIES; NESTED GENES; PREFERENTIAL EXPRESSION; NATURAL-SELECTION; RNA LOCALIZATION; DROSOPHILA; COURTSHIP; MEMORY;
D O I
10.1371/journal.pone.0076351
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Intronic genes represent similar to 6% of the total gene complement in Drosophila melanogaster and similar to 85% of them encode for proteins. We recently characterized the D. melanogaster timeless2 (tim2) gene, showing its active involvement in chromosomal stability and light synchronization of the adult circadian clock. The protein coding gene named 2mit maps on the 11th tim2 intron in the opposite transcriptional orientation. Methodology/Principal Findings: Here we report the molecular and functional characterization of 2mit. The 2mit gene is expressed throughout Drosophila development, localizing mainly in the nervous system during embryogenesis and mostly in the mushroom bodies and ellipsoid body of the central complex in the adult brain. In silico analyses revealed that 2mit encodes a putative leucine-Rich Repeat transmembrane receptor with intrinsically disordered regions, harboring several fully conserved functional interaction motifs in the cytosolic side. Using insertional mutations, tissue-specific over-expression, and down-regulation approaches, it was found that 2mit is implicated in adult short-term memory, assessed by a courtship conditioning assay. In D. melanogaster, tim2 and 2mit do not seem to be functionally related. Bioinformatic analyses identified 2MIT orthologs in 21 Drosophilidae, 4 Lepidoptera and in Apis mellifera. In addition, the tim2-2mit host-nested gene organization was shown to be present in A. mellifera and maintained among Drosophila species. Within the Drosophilidae 2mit-hosting tim2 intron, in silico approaches detected a neuronal specific transcriptional binding site which might have contributed to preserve the specific host-nested gene association across Drosophila species. Conclusions/Significance: Taken together, these results indicate that 2mit, a gene mainly expressed in the nervous system, has a role in the behavioral plasticity of the adult Drosophila. The presence of a putative 2mit regulatory enhancer within the 2mit-hosting tim2 intron could be considered an evolutionary constraint potentially involved in maintaining the tim2-2mit host-nested chromosomal architecture during the evolution of Drosophila species.
引用
收藏
页数:19
相关论文
共 81 条
[1]   Simple consensus procedures are effective and sufficient in secondary structure prediction [J].
Albrecht, M ;
Tosatto, SCE ;
Lengauer, T ;
Valle, G .
PROTEIN ENGINEERING, 2003, 16 (07) :459-462
[2]  
[Anonymous], 2005, EVOLUTION INSECTS
[3]   The Mushroom Body of Adult Drosophila Characterized by GAL4 Drivers [J].
Aso, Yoshinori ;
Grubel, Kornelia ;
Busch, Sebastian ;
Friedrich, Anja B. ;
Siwanowicz, Igor ;
Tanimoto, Hiromu .
JOURNAL OF NEUROGENETICS, 2009, 23 (1-2) :156-U29
[4]   Nested genes and increasing organizational complexity of metazoan genomes [J].
Assis, Raquel ;
Kondrashov, Alexey S. ;
Koonin, Eugene V. ;
Kondrashov, Fyodor A. .
TRENDS IN GENETICS, 2008, 24 (10) :475-478
[5]   Electrostatics of nanosystems: Application to microtubules and the ribosome [J].
Baker, NA ;
Sept, D ;
Joseph, S ;
Holst, MJ ;
McCammon, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (18) :10037-10041
[6]   The leucine-rich repeat structure [J].
Bella, J. ;
Hindle, K. L. ;
McEwan, P. A. ;
Lovell, S. C. .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2008, 65 (15) :2307-2333
[7]   Drosophila timeless2 Is Required for Chromosome Stability and Circadian Photoreception [J].
Benna, Clara ;
Bonaccorsi, Silvia ;
Wuelbeck, Corinna ;
Helfrich-Foerster, Charlotte ;
Gatti, Maurizio ;
Kyriacou, Charalambos P. ;
Costa, Rodolfo ;
Sandrelli, Federica .
CURRENT BIOLOGY, 2010, 20 (04) :346-352
[8]   Genome-scale analysis of positionally relocated genes [J].
Bhutkar, Arjun ;
Russo, Susan M. ;
Smith, Temple F. ;
Gelbart, William M. .
GENOME RESEARCH, 2007, 17 (12) :1880-1887
[9]   Prediction of subcellular localization using sequence-biased recurrent networks [J].
Bodén, M ;
Hawkins, J .
BIOINFORMATICS, 2005, 21 (10) :2279-2286
[10]   Structure prediction meta server [J].
Bujnicki, JM ;
Elofsson, A ;
Fischer, D ;
Rychlewski, L .
BIOINFORMATICS, 2001, 17 (08) :750-751