A SPARSE-GRID METHOD FOR MULTI-DIMENSIONAL BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS

被引:35
作者
Zhang, Guannan [1 ,2 ]
Gunzburger, Max [1 ]
Zhao, Weidong [3 ]
机构
[1] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA
[2] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA
[3] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
基金
美国能源部;
关键词
Backward stochastic differential equations; Multi-step scheme; Gauss-Hermite quadrature rule; Adaptive hierarchical basis; Sparse grids; COLLOCATION METHOD; NUMERICAL-METHOD; THETA-SCHEME; INTEGRATION; INTERPOLATION;
D O I
10.4208/jcm.1212-m4014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A sparse-grid method for solving multi-dimensional backward stochastic differential equations (BSDEs) based on a multi-step time discretization scheme [31] is presented. In the multi-dimensional spatial domain, i.e. the Brownian space, the conditional mathematical expectations derived from the original equation are approximated using sparse-grid Gauss-Hermite quadrature rule and (adaptive) hierarchical sparse-grid interpolation. Error estimates are proved for the proposed fully-discrete scheme for multi-dimensional BSDEs with certain types of simplified generator functions. Finally, several numerical examples are provided to illustrate the accuracy and efficiency of our scheme.
引用
收藏
页码:221 / 248
页数:28
相关论文
共 31 条
[1]   High dimensional polynomial interpolation on sparse grids [J].
Barthelmann, V ;
Novak, E ;
Ritter, K .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2000, 12 (04) :273-288
[2]   A forward scheme for backward SDEs [J].
Bender, Christian ;
Denk, Robert .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (12) :1793-1812
[3]   Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations [J].
Bouchard, B ;
Touzi, N .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 111 (02) :175-206
[4]  
Bungartz HJ, 2004, ACT NUMERIC, V13, P147, DOI 10.1017/S0962492904000182
[5]  
Burkardt J., SPARSE GRIDS BASED G
[6]   The steepest descent method for Forward-Backward SDEs [J].
Cvitanic, J ;
Zhang, JF .
ELECTRONIC JOURNAL OF PROBABILITY, 2005, 10 :1468-1495
[7]   A forward-backward stochastic algorithm for quasi-linear PDEs [J].
Delarue, F ;
Menozzi, S .
ANNALS OF APPLIED PROBABILITY, 2006, 16 (01) :140-184
[8]   Backward stochastic differential equations in finance [J].
El Karoui, N ;
Peng, S ;
Quenez, MC .
MATHEMATICAL FINANCE, 1997, 7 (01) :1-71
[9]   Numerical integration using sparse grids [J].
Gerstner, T ;
Griebel, M .
NUMERICAL ALGORITHMS, 1998, 18 (3-4) :209-232
[10]   SOLVING BSDE WITH ADAPTIVE CONTROL VARIATE [J].
Gobet, Emmanuel ;
Labart, Celine .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (01) :257-277