On Schwarz-type smoothers for saddle point problems with applications to PDE-constrained optimization problems

被引:16
作者
Simon, Rene [1 ]
Zulehner, Walter [2 ]
机构
[1] Johannes Kepler Univ Linz, SFB 013, A-4040 Linz, Austria
[2] Johannes Kepler Univ Linz, Inst Computat Math, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
NAVIER-STOKES EQUATIONS; LAGRANGIAN-MULTIPLIERS; TRANSFORMING SMOOTHERS; MULTIGRID SOLUTION; PRECONDITIONERS; CONVERGENCE; SYSTEMS;
D O I
10.1007/s00211-008-0187-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a (one-shot) multigrid strategy for solving the discretized optimality system (KKT system) of a PDE-constrained optimization problem. In particular, we discuss the construction of an additive Schwarz-type smoother for a certain class of optimal control problems. A rigorous multigrid convergence analysis is presented. Numerical experiments are shown which confirm the theoretical results.
引用
收藏
页码:445 / 468
页数:24
相关论文
共 23 条
[1]  
[Anonymous], 1971, OPTIMAL CONTROL SYST
[2]  
[Anonymous], 2005, Optimale Steuerung partieller Differentialgleichungen: Theorie, Verfahren und Anwendungen
[3]  
ARIAN E, 1994, 9452 ICASE NASA LANG
[4]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[5]  
Battermann A, 1998, INT SER NUMER MATH, V126, P15
[6]  
Battermann A, 2001, INT SER NUMER MATH, V138, P1
[7]   Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization. Part I: The Krylov-Schur solver [J].
Biros, G ;
Ghattas, O .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (02) :687-713
[8]   ACCURACY AND CONVERGENCE PROPERTIES OF THE FINITE DIFFERENCE MULTIGRID SOLUTION OF AN OPTIMAL CONTROL OPTIMALITY SYSTEM [J].
Borzi, Alfio ;
Kunisch, Karl ;
Kwak, Do Y. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 41 (05) :1477-1497
[9]   An efficient smoother for the Stokes problem [J].
Braess, D ;
Sarazin, R .
APPLIED NUMERICAL MATHEMATICS, 1997, 23 (01) :3-19
[10]  
BRENNER S., 1996, RAIRO-MATH MODEL NUM, V30, P265