Planar graphs with cycles of length neither 4 nor 6 are (2,0,0)-colorable

被引:13
作者
Wang, Yingqian [1 ]
Xu, Jinghan [1 ]
机构
[1] Zhejiang Normal Univ, Coll Math Phys & Informat Engn, Jinhua 321004, Peoples R China
关键词
Combinatorial problems; Planar graph; Cycle; Improper coloring; COLORINGS; MAP;
D O I
10.1016/j.ipl.2013.06.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let d(1),d(2), ... , d(k) be k non-negative integers. A graph G is (d(1), d(2), ... , d(k))-colorable, if the vertex set of G can be partitioned into subsets V-1, V-2, ... , V-k such that the graph G[V-i] induced by V-i has maximum degree at most d(i) for i = 1, 2, ... , k. In this paper, we show that planar graphs with cycles of length neither 4 nor 6 are (2, 0, 0)-colorable. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:659 / 663
页数:5
相关论文
共 18 条
[1]   EVERY PLANAR MAP IS 4 COLORABLE .1. DISCHARGING [J].
APPEL, K ;
HAKEN, W .
ILLINOIS JOURNAL OF MATHEMATICS, 1977, 21 (03) :429-490
[2]   EVERY PLANAR MAP IS 4 COLORABLE .2. REDUCIBILITY [J].
APPEL, K ;
HAKEN, W ;
KOCH, J .
ILLINOIS JOURNAL OF MATHEMATICS, 1977, 21 (03) :491-567
[3]   Planar graphs without triangles adjacent to cycles of length from 4 to 7 are 3-colorable [J].
Borodin, O. V. ;
Glebov, A. N. ;
Raspaud, A. .
DISCRETE MATHEMATICS, 2010, 310 (20) :2584-2594
[4]  
Chang G.J., 2011, PREPRINT
[5]   DEFECTIVE COLORINGS OF GRAPHS IN SURFACES - PARTITIONS INTO SUBGRAPHS OF BOUNDED VALENCY [J].
COWEN, LJ ;
COWEN, RH ;
WOODALL, DR .
JOURNAL OF GRAPH THEORY, 1986, 10 (02) :187-195
[6]   A note on list improper coloring of plane graphs [J].
Dong, Wei ;
Xu, Baogang .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (02) :433-436
[7]  
Eaton N., 1999, Bull. Inst. Combin. Appl., V25, P79
[8]  
GROTZSCH H., 1959, DREIFARBENSATZ D M N, V8, P109
[9]  
Hill O., DISCRETE MA IN PRESS
[10]  
Kang Y, PLANAR GRAPHS UNPUB