Metabolomic approach to evaluating adriamycin pharmacodynamics and resistance in breast cancer cells

被引:73
作者
Cao, Bei [1 ]
Li, Mengjie [1 ]
Zha, Weibin [1 ]
Zhao, Qijin [1 ]
Gu, Rongrong [1 ]
Liu, Linsheng [1 ]
Shi, Jian [1 ]
Zhou, Jun [1 ]
Zhou, Fang [1 ]
Wu, Xiaolan [1 ]
Wu, Zimei [2 ]
Wang, Guangji [1 ]
Aa, Jiye [1 ]
机构
[1] China Pharmaceut Univ, Lab Metabol, Key Lab Drug Metab & Pharmacokinet, State Key Lab Nat Med, Nanjing 21009, Jiangsu, Peoples R China
[2] Univ Auckland, Sch Pharm, Auckland 1142, New Zealand
关键词
Cellular metabolomics; Adriamycin; Breast cancer MCF-7 cell line; Drug resistance; Reactive oxygen species; Biomarkers; 20(S)-GINSENOSIDE RH2; DOXORUBICIN; MCF-7; APOPTOSIS; NUCLEOSIDES; MECHANISMS; IMATINIB; BIOLOGY; PURINE; GROWTH;
D O I
10.1007/s11306-013-0517-x
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Continuous exposure of breast cancer cells to adriamycin induces high expression of P-gp and multiple drug resistance. However, the biochemical process and the underlying mechanisms for the gradually induced resistance are not clear. To explore the underlying mechanism and evaluate the anti-tumor effect and resistance of adriamycin, the drug-sensitive MCF-7S and the drug-resistant MCF-7Adr breast cancer cells were used and treated with adriamycin, and the intracellular metabolites were profiled using gas chromatography mass spectrometry. Principal components analysis of the data revealed that the two cell lines showed distinctly different metabolic responses to adriamycin. Adriamycin exposure significantly altered metabolic pattern of MCF-7S cells, which gradually became similar to the pattern of MCF-7Adr, indicating that metabolic shifts were involved in adriamycin resistance. Many intracellular metabolites involved in various metabolic pathways were significantly modulated by adriamycin treatment in the drug-sensitive MCF-7S cells, but were much less affected in the drug-resistant MCF-7Adr cells. Adriamycin treatment markedly depressed the biosynthesis of proteins, purines, pyrimidines and glutathione, and glycolysis, while it enhanced glycerol metabolism of MCF-7S cells. The elevated glycerol metabolism and down-regulated glutathione biosynthesis suggested an increased reactive oxygen species (ROS) generation and a weakened ability to balance ROS, respectively. Further studies revealed that adriamycin increased ROS and up-regulated P-gp in MCF-7S cells, which could be reversed by N-acetylcysteine treatment. It is suggested that adriamycin resistance is involved in slowed metabolism and aggravated oxidative stress. Assessment of cellular metabolomics and metabolic markers may be used to evaluate anti-tumor effects and to screen for candidate anti-tumor agents.
引用
收藏
页码:960 / 973
页数:14
相关论文
共 41 条
[1]   Extraction and GC/MS analysis of the human blood plasma metabolome [J].
A, J ;
Trygg, J ;
Gullberg, J ;
Johansson, AI ;
Jonsson, P ;
Antti, H ;
Marklund, SL ;
Moritz, T .
ANALYTICAL CHEMISTRY, 2005, 77 (24) :8086-8094
[2]   Chronic Myeloid Leukemia Patients Sensitive and Resistant to Imatinib Treatment Show Different Metabolic Responses [J].
A, Jiye ;
Qian, Sixuan ;
Wang, Guangji ;
Yan, Bei ;
Zhang, Sujiang ;
Huang, Qing ;
Ni, Lingna ;
Zha, Weibin ;
Liu, Linsheng ;
Cao, Bei ;
Hong, Ming ;
Wu, Hanxin ;
Lu, Hua ;
Shi, Jian ;
Li, Mengjie ;
Li, Jianyong .
PLOS ONE, 2010, 5 (10)
[3]   Gas chromatography time-of-flight mass spectrometry based metabolomic approach to evaluating toxicity of triptolide [J].
Aa, Jiye ;
Shao, Feng ;
Wang, Guangji ;
Huang, Qing ;
Zha, Weibin ;
Yan, Bei ;
Zheng, Tian ;
Liu, Linsheng ;
Cao, Bei ;
Shi, Jian ;
Li, Mengjie ;
Zhao, Chunyan ;
Wang, Xinwen ;
Wu, Zimei .
METABOLOMICS, 2011, 7 (02) :217-225
[4]   GLYCOLYSIS IN P-GLYCOPROTEIN-OVEREXPRESSING HUMAN-TUMOR CELL-LINES - EFFECTS OF RESISTANCE-MODIFYING AGENTS [J].
BROXTERMAN, HJ ;
PINEDO, HM ;
KUIPER, CM ;
SCHUURHUIS, GJ ;
LANKELMA, J .
FEBS LETTERS, 1989, 247 (02) :405-410
[5]   Remodeling of central metabolism in invasive breast cancer compared to normal breast tissue - a GC-TOFMS based metabolomics study [J].
Budczies, Jan ;
Denkert, Carsten ;
Mueller, Berit M. ;
Brockmoeller, Scarlet F. ;
Klauschen, Frederick ;
Gyoerffy, Balazs ;
Dietel, Manfred ;
Richter-Ehrenstein, Christiane ;
Marten, Ulrike ;
Salek, Reza M. ;
Griffin, Julian L. ;
Hilvo, Mika ;
Oresic, Matej ;
Wohlgemuth, Gert ;
Fiehn, Oliver .
BMC GENOMICS, 2012, 13
[6]  
Bullinger Dino, 2007, BMC Biochemistry, V8, P25, DOI 10.1186/1471-2091-8-25
[7]   GC-TOFMS analysis of metabolites in adherent MDCK cells and a novel strategy for identifying intracellular metabolic markers for use as cell amount indicators in data normalization [J].
Cao, Bei ;
Aa, Jiye ;
Wang, Guangji ;
Wu, Xiaolan ;
Liu, Linsheng ;
Li, Mengjie ;
Shi, Jian ;
Wang, Xinwen ;
Zhao, Chunyan ;
Zheng, Tian ;
Guo, Sheng ;
Duan, Jinao .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2011, 400 (09) :2983-2993
[8]  
Chuthapisith S, 2007, INT J ONCOL, V30, P1545
[9]   Osteosarcoma cells, resistant to methotrexate due to nucleoside and nucleobase salvage, are sensitive to nucleoside analogs [J].
Cole, PD ;
Smith, AK ;
Kamen, BA .
CANCER CHEMOTHERAPY AND PHARMACOLOGY, 2002, 50 (02) :111-116
[10]   THE MOLECULAR PHARMACOLOGY OF DOXORUBICIN INVIVO [J].
CUMMINGS, J ;
ANDERSON, L ;
WILLMOTT, N ;
SMYTH, JF .
EUROPEAN JOURNAL OF CANCER, 1991, 27 (05) :532-535