Large-area fabrication of TiN nanoantenna arrays for refractory plasmonics in the mid-infrared by femtosecond direct laser writing and interference lithography

被引:61
作者
Bagheri, Shahin [1 ,2 ]
Zgrabik, Christine M. [3 ]
Gissibl, Timo [1 ,2 ]
Tittl, Andreas [1 ,2 ]
Sterl, Florian [1 ,2 ]
Walter, Ramon [1 ,2 ]
De Zuani, Stefano [2 ,4 ]
Berrier, Audrey [2 ,4 ]
Stauden, Thomas [5 ]
Richter, Gunther [6 ]
Hu, Evelyn L. [3 ]
Giessen, Harald [1 ,2 ]
机构
[1] Univ Stuttgart, Inst Phys 4, D-70174 Stuttgart, Germany
[2] Univ Stuttgart, Res Ctr SCoPE, D-70174 Stuttgart, Germany
[3] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[4] Univ Stuttgart, Inst Phys 1, D-70174 Stuttgart, Germany
[5] Tech Univ Ilmenau, Fachgebiet Nanotechnol, Ilmenau, Germany
[6] Max Planck Inst Intelligente Syst, D-70569 Stuttgart, Germany
基金
美国国家科学基金会;
关键词
TITANIUM NITRIDE; PERFECT ABSORBER; SPECTROSCOPY; NANOPARTICLES; METAMATERIAL; WAVELENGTH; TRANSITION; NANOSCALE; RANGE;
D O I
10.1364/OME.5.002625
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Robust plasmonic nanoantennas at mid-infrared wavelengths are essential components for a variety of nanophotonic applications ranging from thermography to energy conversion. Titanium nitride (TiN) is a promising candidate for such cases due to its high thermal stability and metallic character. Here, we employ direct laser writing as well as interference lithography to fabricate large-area nanoantenna arrays of TiN on sapphire and silicon substrates. Our lithographic tools allow for fast and homogeneous preparation of nanoantenna geometries on a polymer layer, which is then selectively transferred to TiN by subsequent argon ion beam etching followed by a chemical wet etching process. The antennas are protected by an additional Al2O3 layer which allows for high-temperature annealing in argon flow without loss of the plasmonic properties. Tailoring of the TiN antenna geometry enables precise tuning of the plasmon resonances from the near to the mid-infrared spectral range. Due to the advantageous properties of TiN combined with our versatile large-area and low-cost fabrication process, such refractory nanoantennas will enable a multitude of high-temperature plasmonic applications such as thermophotovoltaics in the future. (C) 2015 Optical Society of America
引用
收藏
页码:2625 / 2633
页数:9
相关论文
共 35 条
[11]   Nanoparticle plasmonics: going practical with transition metal nitrides [J].
Guler, Urcan ;
Shalaev, Vladimir M. ;
Boltasseva, Alexandra .
MATERIALS TODAY, 2015, 18 (04) :227-237
[12]   Refractory Plasmonics [J].
Guler, Urcan ;
Boltasseva, Alexandra ;
Shalaev, Vladimir M. .
SCIENCE, 2014, 344 (6181) :263-264
[13]   Local Heating with Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles [J].
Guler, Urcan ;
Ndukaife, Justus C. ;
Naik, Gururaj V. ;
Nnanna, A. G. Agwu ;
Kildishev, Alexander V. ;
Shalaev, Vladimir M. ;
Boltasseva, Alexandra .
NANO LETTERS, 2013, 13 (12) :6078-6083
[14]   DNA-assembled bimetallic plasmonic nanosensors [J].
Li, Na ;
Tittl, Andreas ;
Yue, Song ;
Giessen, Harald ;
Song, Chen ;
Ding, Baoquan ;
Liu, Na .
LIGHT-SCIENCE & APPLICATIONS, 2014, 3 :e226-e226
[15]   Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber [J].
Li, Wei ;
Guler, Urcan ;
Kinsey, Nathaniel ;
Naik, Gururaj V. ;
Boltasseva, Alexandra ;
Guan, Jianguo ;
Shalaev, Vladimir M. ;
Kildishev, Alexander V. .
ADVANCED MATERIALS, 2014, 26 (47) :7959-+
[16]   Dielectric gradient metasurface optical elements [J].
Lin, Dianmin ;
Fan, Pengyu ;
Hasman, Erez ;
Brongersma, Mark L. .
SCIENCE, 2014, 345 (6194) :298-302
[17]  
Liu N, 2011, NAT MATER, V10, P631, DOI [10.1038/NMAT3029, 10.1038/nmat3029]
[18]   Infrared Perfect Absorber and Its Application As Plasmonic Sensor [J].
Liu, Na ;
Mesch, Martin ;
Weiss, Thomas ;
Hentschel, Mario ;
Giessen, Harald .
NANO LETTERS, 2010, 10 (07) :2342-2348
[19]  
Liu N, 2009, NAT MATER, V8, P758, DOI [10.1038/nmat2495, 10.1038/NMAT2495]
[20]  
Maus C., 2012, SEMICOND SCI TECH, V27, P3264