Regularity for multi-phase variational problems

被引:77
作者
De Filippis, Cristiana [1 ]
Oh, Jehan [2 ]
机构
[1] Univ Oxford, Math Inst, Radcliffe Observ Quarter, Andrew Wiles Bldg,Woodstock Rd, Oxford OX26GG, England
[2] Univ Bielefeld, Fak Math, Postfach 100131, D-33501 Bielefeld, Germany
关键词
Regularity; Non-uniformly elliptic problems; Minimizer; Multi-phase; ELLIPTIC-EQUATIONS; HOLDER REGULARITY; MINIMIZERS; FUNCTIONALS; SYSTEMS; MINIMA;
D O I
10.1016/j.jde.2019.02.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove C-1,C-nu -regularity for local minimizers of the multi-phase energy: w bar right arrow integral(Omega)vertical bar Dw vertical bar(p)+a(x)vertical bar Dw vertical bar(q)+b(x)vertical bar Dw vertical bar(s)dx, under sharp assumptions relating the couples (p, q) and (p, s) to the Holder exponents of the modulating coefficients a(.) and b(.), respectively. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1631 / 1670
页数:40
相关论文
共 37 条
[1]  
Acerbi E., 1988, An approximation lemma for functions, Material instabilities in continuum mechanics (Edinburgh, 19851986), P1
[2]  
[Anonymous], 1986, THESIS WASHINGTON U
[3]  
[Anonymous], 2014, ANN SC NORM SUPER PI
[4]   NON-AUTONOMOUS FUNCTIONALS, BORDERLINE CASES AND RELATED FUNCTION CLASSES [J].
Baroni, P. ;
Colombo, M. ;
Mingione, G. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (03) :347-379
[5]   Regularity for general functionals with double phase [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[6]   The Cauchy-Dirichlet problem for a general class of parabolic equations [J].
Baroni, Paolo ;
Lindfors, Casimir .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (03) :593-624
[7]   Harnack inequalities for double phase functionals [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 :206-222
[8]   Global Lipschitz continuity for minima of degenerate problems [J].
Bousquet, Pierre ;
Brasco, Lorenzo .
MATHEMATISCHE ANNALEN, 2016, 366 (3-4) :1403-1450
[9]   Riesz potential estimates for a class of double phase problems [J].
Byun, Sun-Sig ;
Youn, Yeonghun .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (02) :1263-1316
[10]   Global gradient estimates for non-uniformly elliptic equations [J].
Byun, Sun-Sig ;
Oh, Jehan .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (02)