Controlled Cavity-Free, Single-Photon Emission and Bipartite Entanglement of Near-Field-Excited Quantum Emitters

被引:13
作者
Bello, Frank [4 ,5 ]
Kongsuwan, Nuttawut [1 ,2 ,3 ]
Donegan, John F. [4 ,5 ]
Hess, Ortwin [1 ,4 ,5 ]
机构
[1] Imperial Coll London, Dept Phys, Blackett Lab, London SW7 2AZ, England
[2] Quantum Technol Fdn Thailand, Bangkok 10110, Thailand
[3] Commiss Higher Educ, Thailand Ctr Excellence Phys, Bangkok 10400, Thailand
[4] Trinity Coll Dublin, Sch Phys, Dublin 2, Ireland
[5] Trinity Coll Dublin, CRANN Inst, Dublin 2, Ireland
基金
欧盟地平线“2020”;
关键词
Entanglement; quantum emitter; single-photon emission; near-field transducer; plasmonic waveguide; near-zero index media; ROOM-TEMPERATURE; DOTS;
D O I
10.1021/acs.nanolett.0c01705
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report theoretical statistics of 1- and 2-qubit (bipartite) systems, namely, photon antibunching and entanglement, of near-field excited quantum emitters. The subdiffraction focusing of a plasmonic waveguide is shown to generate enough power over a sufficiently small region (<50 X 50 nm(2)) to strongly drive quantum emitters. This enables ultrafast (10(-14) s) single-photon emission as well as creates entangled states between two emitters when performing a controlled-NOT operation. A comparative analysis of silicon and near-zero index materials demonstrates advantages and uncovers challenges of embedding quantum emitters for single-photon emission and for bipartite entanglement. The use of a movable plasmonic waveguide, in lieu of stationary nanostructures, allows high-speed rasterization between sets of qubits and enables spatially flexible data storage and quantum information processing. Furthermore, the sub-diffraction focusing of the waveguide is shown to achieve cavity-free dynamic entanglement. This greatly reduces fabrication constraints and increases the speed and scalability of nanophotonic quantum devices.
引用
收藏
页码:5830 / 5836
页数:7
相关论文
共 57 条
[1]   Plasmon-assisted transmission of entangled photons [J].
Altewischer, E ;
van Exter, MP ;
Woerdman, JP .
NATURE, 2002, 418 (6895) :304-306
[2]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[3]   Photon antibunching and nonlinear effects for a quantum dot coupled to a semiconductor cavity [J].
Bello, F. ;
Whittaker, D. M. .
PHYSICAL REVIEW B, 2010, 82 (11)
[4]   Combining ε-Near-Zero Behavior and Stopped Light Energy Bands for Ultra-Low Reflection and Reduced Dispersion of Slow Light [J].
Bello, Frank ;
Page, A. Freddie ;
Pusch, Andreas ;
Hamm, Joachim M. ;
Donegan, John F. ;
Hess, Ortwin .
SCIENTIFIC REPORTS, 2017, 7
[5]   Direct growth of III-V quantum dots on silicon substrates: structural and optical properties [J].
Benyoucef, M. ;
Reithmaier, J. P. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2013, 28 (09)
[6]   Qubit entanglement across ε-near-zero media [J].
Biehs, S. -A. ;
Agarwal, G. S. .
PHYSICAL REVIEW A, 2017, 96 (02)
[7]   Overcoming quantum decoherence with plasmonics [J].
Bogdanov, Simeon I. ;
Boltasseva, Alexandra ;
Shalaev, Vladimir M. .
SCIENCE, 2019, 364 (6440) :532-533
[8]   Two-qubit conditional quantum-logic operation in a single self-assembled quantum dot [J].
Boyle, S. J. ;
Ramsay, A. J. ;
Bello, F. ;
Liu, H. Y. ;
Hopkinson, M. ;
Fox, A. M. ;
Skolnick, M. S. .
PHYSICAL REVIEW B, 2008, 78 (07)
[9]   Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna [J].
Chen, Yan ;
Zopf, Michael ;
Keil, Robert ;
Ding, Fei ;
Schmidt, Oliver G. .
NATURE COMMUNICATIONS, 2018, 9
[10]   Single-molecule strong coupling at room temperature in plasmonic nanocavities [J].
Chikkaraddy, Rohit ;
de Nijs, Bart ;
Benz, Felix ;
Barrow, Steven J. ;
Scherman, Oren A. ;
Rosta, Edina ;
Demetriadou, Angela ;
Fox, Peter ;
Hess, Ortwin ;
Baumberg, Jeremy J. .
NATURE, 2016, 535 (7610) :127-130