Electrodeposition of porous copper as a substrate for electrocatalytic material

被引:12
作者
Singh, Himanshu [1 ]
Dheeraj, P. B. [1 ]
Singh, Yash Pratap [1 ]
Rathore, Gaurav [1 ]
Bhardwaj, Mukesh [1 ]
机构
[1] Indian Inst Technol, Dept Met & Mat Engn, Roorkee 247667, Uttar Pradesh, India
关键词
Electrodeposition; Porous copper; Hydrogen bubble dynamic template; Electrocatalyst; Electrochemical impedance spectroscopy; Scanning electron microscopy; HYDROGEN EVOLUTION REACTION; ION BATTERIES; IMPEDANCE SPECTROSCOPY; SURFACE-AREA; CODEPOSITION; MORPHOLOGY; FOAM; REGIME; PARAMETERS; FILMS;
D O I
10.1016/j.jelechem.2016.12.013
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Porous copper was electrodeposited using hydrogen bubble dynamic template. Various electrolytes having CuSO4 and H2SO4 in fixed molar ratio approximately equal to 0.3 and at temperature 18 degrees C were utilized for potentiostatic electrodeposition at various cathodic potentials. After electrodeposition, electrochemical impedance spectroscopy studies were conducted in 2.5 M NaCl solution at room temperature for determining electrochemically active true surface area. The surface morphologies of the deposits were analyzed using scanning electron microscope. Electrolyte with composition 0.12 M CuSO4 and 0.4 M H2SO4 resulted in maximum electrochemically active true surface area due to more open structure with thick dendrite branches which was correlated to high hydrogen evolution rate. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 36 条
[1]   A direct method to determine transfer function parameters in case of hydrogen evolution reaction [J].
Bhardwaj, Mukesh ;
Balasubramaniam, R. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (16) :4255-4259
[2]   THE ANALYSIS OF ELECTRODE IMPEDANCES COMPLICATED BY THE PRESENCE OF A CONSTANT PHASE ELEMENT [J].
BRUG, GJ ;
VANDENEEDEN, ALG ;
SLUYTERSREHBACH, M ;
SLUYTERS, JH .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1984, 176 (1-2) :275-295
[3]   Aqueous speciation of sulfuric acid-cupric sulfate solutions [J].
Casas, JM ;
Alvarez, F ;
Cifuentes, L .
CHEMICAL ENGINEERING SCIENCE, 2000, 55 (24) :6223-6234
[4]   IMPEDANCE SPECTROSCOPY OF RAMIFIED ELECTRODEPOSITS [J].
CHASSAING, E ;
ROSSO, M ;
SAPOVAL, B ;
CHAZALVIEL, JN .
ELECTROCHIMICA ACTA, 1993, 38 (14) :1941-1944
[5]   Electrodeposited copper foams as substrates for thin film silicon electrodes [J].
Dogan, Fulya ;
Sanjeewa, Liurukara D. ;
Hwu, Shiou-Jyh ;
Vaughey, J. T. .
SOLID STATE IONICS, 2016, 288 :204-206
[6]   Electrodeposition and characterization of nickel-copper metallic foams for application as electrodes for supercapacitors [J].
Eugenio, S. ;
Silva, T. M. ;
Carmezim, M. J. ;
Duarte, R. G. ;
Montemor, M. F. .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2014, 44 (04) :455-465
[7]   Double-template fabrication of three-dimensional porous nickel electrodes for hydrogen evolution reaction [J].
Herraiz-Cardona, I. ;
Ortega, E. ;
Vazquez-Gomez, L. ;
Perez-Herranz, V. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (03) :2147-2156
[8]   Preparation of copper foam with 3-dimensionally interconnected spherical pore network by electrodeposition [J].
Kim, Jeong-Han ;
Kim, Ryoung-Hee ;
Kwon, Hyuk-Sang .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (08) :1148-1151
[9]  
LEVIE RD, 1963, ELECTROCHIM ACTA, V8, P751
[10]  
Li Y., CHEM MAT, V19