Multidimensional mode-separable frequency conversion for high-speed quantum communication

被引:59
作者
Manurkar, Paritosh [1 ]
Jain, Nitin [1 ]
Silver, Michael [1 ]
Huang, Yu-Ping [2 ]
Langrock, Carsten [3 ]
Fejer, Martin M. [3 ]
Kumar, Prem [1 ,4 ]
Kanter, Gregory S. [1 ]
机构
[1] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
[2] Stevens Inst Technol, Dept Phys & Engn Phys, Hoboken, NJ 07030 USA
[3] Stanford Univ, EL Ginzton Lab, Stanford, CA 94305 USA
[4] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
来源
OPTICA | 2016年 / 3卷 / 12期
关键词
ORBITAL ANGULAR-MOMENTUM; WAVE-FORM GENERATION; UP-CONVERSION; HIGH-EFFICIENCY;
D O I
10.1364/OPTICA.3.001300
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum frequency conversion (QFC) of photonic signals preserves quantum information while simultaneously changing the signal wavelength. A common application of QFC is to translate the wavelength of a signal compatible with the current fiber-optic infrastructure to a shorter wavelength more compatible with high-quality single-photon detectors and optical memories. Recent work has investigated the use of QFC to manipulate and measure specific temporal modes (TMs) through tailoring the pump pulses. Such a scheme holds promise for multidimensional quantum state manipulation that is both low loss and re-programmable on a fast time scale. We demonstrate the first QFC temporal mode sorting system in a four-dimensional Hilbert space, achieving a conversion efficiency and mode separability as high as 92% and 0.84, respectively. A 20-GHz pulse train is projected onto 6 different TMs, including superposition states, and mode separability with weak coherent signals is verified via photon counting. Such ultrafast high-dimensional photonic signals could enable long-distance quantum communication at high rates. (C)2016 Optical Society of America
引用
收藏
页码:1300 / 1307
页数:8
相关论文
共 44 条
  • [1] Agrawal GP, 2010, WILEY MICRO, V222, P1, DOI 10.1002/9780470918524
  • [2] ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES
    ALLEN, L
    BEIJERSBERGEN, MW
    SPREEUW, RJC
    WOERDMAN, JP
    [J]. PHYSICAL REVIEW A, 1992, 45 (11): : 8185 - 8189
  • [3] Bennett C.H., 1984, PROC IEEE INT C COMP, P175, DOI DOI 10.1016/J.TCS.2014.05.025
  • [4] Photon Temporal Modes: A Complete Framework for Quantum Information Science
    Brecht, B.
    Reddy, Dileep V.
    Silberhorn, C.
    Raymer, M. G.
    [J]. PHYSICAL REVIEW X, 2015, 5 (04):
  • [5] Brecht B, 2013, CONF LASER ELECTR
  • [6] Demonstration of coherent time-frequency Schmidt mode selection using dispersion-engineered frequency conversion
    Brecht, Benjamin
    Eckstein, Andreas
    Ricken, Raimund
    Quiring, Viktor
    Suche, Hubertus
    Sansoni, Linda
    Silberhorn, Christine
    [J]. PHYSICAL REVIEW A, 2014, 90 (03):
  • [7] Brunner N, 2014, REV MOD PHYS, V86, DOI 10.1103/RevModPhys.86.419
  • [8] Security of quantum key distribution using d-level systems -: art. no. 127902
    Cerf, NJ
    Bourennane, M
    Karlsson, A
    Gisin, N
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (12) : 4 - 127902
  • [9] Theory of quantum frequency conversion and type-II parametric down-conversion in the high-gain regime
    Christ, Andreas
    Brecht, Benjamin
    Mauerer, Wolfgang
    Silberhorn, Christine
    [J]. NEW JOURNAL OF PHYSICS, 2013, 15
  • [10] Distributed quantum computation over noisy channels
    Cirac, JI
    Ekert, AK
    Huelga, SF
    Macchiavello, C
    [J]. PHYSICAL REVIEW A, 1999, 59 (06): : 4249 - 4254