AUSLANDER-REITEN QUIVER OF TYPE A AND GENERALIZED QUANTUM AFFINE SCHUR-WEYL DUALITY

被引:6
作者
Oh, Se-Jin [1 ,2 ]
机构
[1] Korea Inst Adv Study, Sch Math, Seoul 130722, South Korea
[2] Ewha Womans Univ, Dept Math, Seoul 120750, South Korea
关键词
FINITE-DIMENSIONAL REPRESENTATIONS; LAUDA-ROUQUIER ALGEBRAS; HECKE ALGEBRAS; DECOMPOSITION NUMBERS; CANONICAL BASES; CRYSTAL BASES; R-MATRICES; Q-ANALOG; MODULES;
D O I
10.1090/tran6704
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The quiver Hecke algebra R can be also understood as a generalization of the affine Hecke algebra of type A in the context of the quantum affine Schur-Weyl duality by the results of Kang, Kashiwara and Kim. On the other hand, it is well known that the Auslander-Reiten (AR) quivers Gamma(Q) of finite simply-laced types have a deep relation with the positive roots systems of the corresponding types. In this paper, we present explicit combinatorial descriptions for the AR-quivers Gamma(Q) of finite type A. Using the combinatorial descriptions, we can investigate relations between finite dimensional module categories over the quantum affine algebra U-q'(A(n)((i))) (i = 1, 2) and finite dimensional graded module categories over the quiver Hecke algebra R-An associated to A(n) through the generalized quantum affine Schur-Weyl duality functor.
引用
收藏
页码:1895 / 1933
页数:39
相关论文
共 49 条
[1]   Finite-dimensional representations of quantum affine algebras [J].
Akasaka, T ;
Kashiwara, M .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1997, 33 (05) :839-867
[2]  
[Anonymous], 1988, Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras. London Mathematical Society Lecture Notes Series
[3]   On the decomposition numbers of the Hecke algebra of G(m,1,n) [J].
Ariki, S .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1996, 36 (04) :789-808
[4]  
Assem I., 2006, LOND MATH SOC STUD T, V1, P65, DOI DOI 10.1017/CB09780511614309
[5]  
Auslander M., 1995, CAMBRIDGE STUDIES AD, V36
[6]   On commutation classes of reduced words in Weyl groups [J].
Bédard, R .
EUROPEAN JOURNAL OF COMBINATORICS, 1999, 20 (06) :483-505
[7]   Construction of Irreducible Representations over Khovanov-Lauda-Rouquier Algebras of Finite Classical Type [J].
Benkart, Georgia ;
Kang, Seok-Jin ;
Oh, Se-jin ;
Park, Euiyong .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (05) :1312-1366
[8]   Parametrizations of canonical bases and totally positive matrices [J].
Berenstein, A ;
Fomin, S ;
Zelevinsky, A .
ADVANCES IN MATHEMATICS, 1996, 122 (01) :49-149
[9]  
Bourbaki N., 1968, Actualites Sci. Industr., V1337
[10]  
BRENNER S, 1986, LECT NOTES MATH, V1177, P13