Loss of Tmem106b exacerbatesFTLDpathologies and causes motor deficits in progranulin-deficient mice

被引:42
作者
Zhou, Xiaolai [1 ]
Brooks, Mieu [1 ]
Jiang, Peizhou [1 ]
Koga, Shunsuke [1 ]
Zuberi, Aamir R. [2 ]
Baker, Matthew C. [1 ]
Parsons, Tammee M. [1 ]
Castanedes-Casey, Monica [1 ]
Phillips, Virginia [1 ]
Librero, Ariston L. [1 ]
Kurti, Aishe [1 ]
Fryer, John D. [1 ]
Bu, Guojun [1 ]
Lutz, Cathleen [2 ]
Dickson, Dennis W. [1 ]
Rademakers, Rosa [1 ,3 ,4 ]
机构
[1] Mayo Clin, Dept Neurosci, Jacksonville, FL 32224 USA
[2] JAX Ctr Precis Genet, Rare & Orphan Dis Ctr, Bar Harbor, ME USA
[3] VIB, VIB Ctr Mol Neurol, Appl & Translat Neurogen, Antwerp, Belgium
[4] Univ Antwerp, Dept Biomed Sci, Antwerp, Belgium
基金
美国国家卫生研究院;
关键词
frontotemporal lobar degeneration; lysosomes; progranulin; Tdp-43; Tmem106b; FRONTOTEMPORAL LOBAR DEGENERATION; RISK-FACTOR; PROTEIN; ABNORMALITIES; PHENOTYPES; NEUROINFLAMMATION; NEUROPATHOLOGY; DYSFUNCTION; VARIANTS; MUTATION;
D O I
10.15252/embr.202050197
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Progranulin (PGRN) and transmembrane protein 106B (TMEM106B) are important lysosomal proteins implicated in frontotemporal lobar degeneration (FTLD) and other neurodegenerative disorders. Loss-of-function mutations in progranulin (GRN) are a common cause ofFTLD, whileTMEM106Bvariants have been shown to act as disease modifiers inFTLD. Overexpression ofTMEM106B leads to lysosomal dysfunction, while loss of Tmem106b ameliorates lysosomal andFTLD-related pathologies in youngGrn(-/-)mice, suggesting that loweringTMEM106B might be an attractive strategy for therapeutic treatment ofFTLD-GRN. Here, we generate and characterize olderTmem106b(-/-)Grn(-/-)double knockout mice, which unexpectedly show severe motor deficits and spinal cord motor neuron and myelin loss, leading to paralysis and premature death at 11-12 months. Compared toGrn(-/-),Tmem106b(-/-)Grn(-/-)mice have exacerbatedFTLD-related pathologies, including microgliosis, astrogliosis, ubiquitin, and phospho-Tdp43 inclusions, as well as worsening of lysosomal and autophagic deficits. Our findings confirm a functional interaction between Tmem106b and Pgrn and underscore the need to rethink whether modulatingTMEM106B levels is a viable therapeutic strategy.
引用
收藏
页数:14
相关论文
共 70 条
[1]   Accelerated Lipofuscinosis and Ubiquitination in Granulin Knockout Mice Suggest a Role for Progranulin in Successful Aging [J].
Ahmed, Zeshan ;
Sheng, Hong ;
Xu, Ya-fei ;
Lin, Wen-Lang ;
Innes, Amy E. ;
Gass, Jennifer ;
Yu, Xin ;
Hou, Harold ;
Chiba, Shuichi ;
Yamanouchi, Keitaro ;
Leissring, Malcolm ;
Petrucelli, Leonard ;
Nishihara, Masugi ;
Hutton, Michael L. ;
McGowan, Eileen ;
Dickson, Dennis W. ;
Lewis, Jada .
AMERICAN JOURNAL OF PATHOLOGY, 2010, 177 (01) :311-324
[2]   Characterization of an FTLD-PDB family with the coexistence of SQSTM1 mutation and hexanucleotide (G4C2) repeat expansion in C9orf72 gene [J].
Almeida, Maria Rosario ;
Letra, Liliana ;
Pires, Paula ;
Santos, Ana ;
Rebelo, Olinda ;
Guerreiro, Rita ;
van der Zee, Julie ;
Van Broeckhoven, Christine ;
Santana, Isabel .
NEUROBIOLOGY OF AGING, 2016, 40 :191.e1-191.e8
[3]   Progranulin haploinsufficiency causes biphasic social dominance abnormalities in the tube test [J].
Arrant, A. E. ;
Filiano, A. J. ;
Warmus, B. A. ;
Hall, A. M. ;
Roberson, E. D. .
GENES BRAIN AND BEHAVIOR, 2016, 15 (06) :588-603
[4]   Impaired β-glucocerebrosidase activity and processing in frontotemporal dementia due to progranulin mutations [J].
Arrant, Andrew E. ;
Roth, Jonathan R. ;
Boyle, Nicholas R. ;
Kashyap, Shreya N. ;
Hoffmann, Madelyn Q. ;
Murchison, Charles F. ;
Ramos, Eliana Marisa ;
Nana, Alissa L. ;
Spina, Salvatore ;
Grinberg, Lea T. ;
Miller, Bruce L. ;
Seeley, William W. ;
Roberson, Erik D. .
ACTA NEUROPATHOLOGICA COMMUNICATIONS, 2019, 7 (01)
[5]   Partial Tmem106b reduction does not correct abnormalities due to progranulin haploinsufficiency [J].
Arrant, Andrew E. ;
Nicholson, Alexandra M. ;
Zhou, Xiaolai ;
Rademakers, Rosa ;
Roberson, Erik D. .
MOLECULAR NEURODEGENERATION, 2018, 13
[6]   Progranulin functions as a cathepsin D chaperone to stimulate axonal outgrowth in vivo [J].
Beel, Sander ;
Moisse, Matthieu ;
Damme, Markus ;
De Muynck, Louis ;
Robberecht, Wim ;
Van den Bosch, Ludo ;
Saftig, Paul ;
Van Damme, Philip .
HUMAN MOLECULAR GENETICS, 2017, 26 (15) :2850-2863
[7]   Autophagy in Myelinating Glia [J].
Belgrad, Jillian ;
De Pace, XRaffaella ;
Fields, R. Douglas .
JOURNAL OF NEUROSCIENCE, 2020, 40 (02) :256-266
[8]   Epidemioloo and genetics of frontotemporal dementia/Pick's disease [J].
Bird, T ;
Knopman, D ;
VanSwieten, J ;
Rosso, S ;
Feldman, H ;
Tanabe, H ;
Graff-Raford, N ;
Geschwind, D ;
Verpillat, P ;
Hutton, M .
ANNALS OF NEUROLOGY, 2003, 54 :S29-S31
[9]   Neuroinflammatory paradigms in lysosomal storage diseases [J].
Bosch, Megan E. ;
Kielian, Tammy .
FRONTIERS IN NEUROSCIENCE, 2015, 9
[10]   Regulated Intramembrane Proteolysis of the Frontotemporal Lobar Degeneration Risk Factor, TMEM106B, by Signal Peptide Peptidase-like 2a (SPPL2a) [J].
Brady, Owen A. ;
Zhou, Xiaolai ;
Hu, Fenghua .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (28) :19670-19680