Input variable identification - Fuzzy curves and fuzzy surfaces

被引:42
作者
Lin, YH
Cunningham, GA
Coggeshall, SV
机构
[1] NEW MEXICO INST MIN & TECHNOL,DEPT ELECT ENGN,SOCORRO,NM 87801
[2] LOS ALAMOS NATL LAB,DIV APPL THEORET PHYS,LOS ALAMOS,NM 87545
关键词
D O I
10.1016/0165-0114(95)00223-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
When modeling a complex, poorly defined, nonlinear problem with hundreds of possible inputs, we must identify the significant inputs before any known nonlinear modeling techniques can be applied. In this paper the concept of fuzzy surfaces is introduced and used to automatically and quickly identify a subset of independent significant inputs for use in nonlinear system models.
引用
收藏
页码:65 / 71
页数:7
相关论文
共 15 条
[1]  
[Anonymous], 1991, Handbook of genetic algorithms
[2]  
[Anonymous], INT J APPROXIMATE RE
[3]   CONTROL PROCEDURES FOR RESIDUALS ASSOCIATED WITH PRINCIPAL COMPONENT ANALYSIS [J].
JACKSON, JE ;
MUDHOLKAR, GS .
TECHNOMETRICS, 1979, 21 (03) :341-349
[4]  
LIN Y, 1994, THESIS NEW MEXICO I
[5]  
LIN Y, 1994, 94222 LACP LOS AL NA
[6]  
Lin Y, 1994, J INTELL FUZZY SYST, V2, P243
[7]  
LIN YH, 1994, PROCEEDINGS OF THE THIRD IEEE CONFERENCE ON FUZZY SYSTEMS - IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, VOLS I-III, P2031, DOI 10.1109/FUZZY.1994.343528
[8]   A NEW APPROACH TO FUZZY-NEURAL SYSTEM MODELING [J].
LIN, YH ;
CUNNINGHAM, GA .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1995, 3 (02) :190-198
[9]  
Lohmoeller J.B., 1989, LATENT VARIABLE PATH
[10]  
MARTENS H, 1989, MULTIVARIATE CALIBRA, P119