Leukotriene B-4 (LTB4) and cysteinyl leukotrienes (CysLTs) are known as potent mediators of inflammation, whereas their role in the regulation of adaptive immunity remains poorly characterized. Dendritic cells (DCs) are specialized antigen-presenting cells, uniquely capable to initiate primary immune responses. We have found that zymosan, but not lipopolysaccharide (LPS) stimulates murine bone marrow-derived dendritic cells (BM-DCs) to produce large amounts of CysLTs and LTB4 from endogenous substrates. A selective inhibitor of leukotriene synthesis MK886 as well as an antagonist of the high affinity LTB4 receptor (BLT1) U-75302 slightly inhibited zymosan-, but not LPS-stimulated interleukin (IL)-10 release from BM-DCs. In contrast, U-75302 increased zymosan-stimulated release of IL-12 p40 by similar to 23%. Pre-treatment with transforming growth factor-beta 1 enhanced both stimulated leukotriene synthesis and the inhibitory effect of U-75302 and MK886 on IL-10 release from DCs. Consistent with the effects of leukotriene antagonists, exogenous LTB4 enhanced LPS-stimulated IL-10 release by similar to 39% and inhibited IL-12 p40 release by similar to 22%. Both effects were mediated by the BLT1 receptor. Ligands of the high affinity CysLTs receptor (CysLT(1)), MK-571 and LTD4 had little or no effect on cytokine release. Agonists of the nuclear LTB4 receptor peroxisome proliferator-activated receptor-alpha, 8(S)-hydroxyeicosatetraenoic acid and 5,8,11,14-eicosatetraynoic acid, inhibited release of both IL-12 p40 and IL-10. Our results indicate that both autocrine and paracrine leukotrienes may modulate cytokine release from DCs, in a manner that is consistent with previously reported T helper 2-polarizing effects of leukotrienes.