Numerical modelling of the co-firing of pulverised coal and straw in a 300 MWe tangentially fired boiler

被引:77
作者
Gubba, S. R. [1 ]
Ingham, D. B. [1 ]
Larsen, K. J. [1 ]
Ma, L. [1 ]
Pourkashanian, M. [1 ]
Tan, H. Z. [1 ,2 ]
Williams, A. [1 ]
Zhou, H. [3 ]
机构
[1] Univ Leeds, Fac Engn, ETII, Leeds LS2 9JT, W Yorkshire, England
[2] Xi An Jiao Tong Univ, Minist Educ, Key Lab Thermofluids Sci & Engn, Xian 710049, Peoples R China
[3] Zhejiang Univ, Inst Thermal Power Engn, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
Biomass; Thermal gradient modelling; Co-firing; Pulverised fuel; Full scale boiler; CFD; BIOMASS PARTICLES; UTILITY BOILER; COMBUSTION; PREDICTION; FURNACE; DEVOLATILIZATION; CONVERSION; EMISSIONS; NITROGEN; BEHAVIOR;
D O I
10.1016/j.fuproc.2012.05.011
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The co-firing of pulverised coal/biomass in power generation plants is receiving considerable attention due to its influence in reducing all forms of emissions. Unlike coal, milled biomass, such as straw, may contain large particles of different sizes and shapes, which can have an impact on the combustion characteristics and emissions. Computational fluid dynamics (CFD) is often used to understand the influence of large biomass particles in a furnace. However, most CFD sub-models simplify heat transfer effects within the particles during combustion. In this paper a particle heat-up model, which considers the influence of thermal gradients within large biomass particles, is applied to a co-firing coal/biomass simulation in a tangentially fired furnace with up to 12% thermal biomass loading. Different sizes of biomass particles of non-spherical shape and their impact on the combustion behavior have been investigated. The influence of the particle size and shape distribution on the combustion characteristics and emissions was found to be significant. The computed results were found to be in good agreement with the experimental data. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:181 / 188
页数:8
相关论文
共 34 条
[1]  
[Anonymous], 1990, INTRO HEAT TRANSFER
[2]  
[Anonymous], 2011, ANSYS FLUENT VERS 13
[3]   Prediction of ignition behavior in a tangentially fired pulverized coal boiler using CFD [J].
Asotani, T. ;
Yamashita, T. ;
Tominaga, H. ;
Uesugi, Y. ;
Itaya, Y. ;
Mori, S. .
FUEL, 2008, 87 (4-5) :482-490
[4]   Modelling pulverised coal combustion using a detailed coal combustion model [J].
Backreedy, RI ;
Fletcher, LM ;
Ma, L ;
Pourkashanian, M ;
Williams, A .
COMBUSTION SCIENCE AND TECHNOLOGY, 2006, 178 (04) :763-787
[5]   Prediction of unburned carbon and NOx in a tangentially fired power station using single coals and blends [J].
Backreedy, RI ;
Jones, JM ;
Ma, L ;
Pourkashanian, M ;
Williams, A ;
Arenillas, A ;
Arias, B ;
Pis, JJ ;
Rubiera, F .
FUEL, 2005, 84 (17) :2196-2203
[6]   Co-firing pulverised coal and biomass: a modeling approach [J].
Backreedy, RI ;
Fletcher, LM ;
Jones, JM ;
Ma, L ;
Pourkashanian, M ;
Williams, A .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2005, 30 :2955-2964
[7]   Biomass-coal co-combustion: opportunity for affordable renewable energy [J].
Baxter, L .
FUEL, 2005, 84 (10) :1295-1302
[8]   Mathematical modeling of straw bale combustion in cigar burners [J].
Bech, N ;
Wolff, L ;
Germann, L .
ENERGY & FUELS, 1996, 10 (02) :276-283
[9]   Three-dimensional modeling of utility boiler pulverized coal tangentially fired furnace [J].
Belosevic, Srdjan ;
Sijercic, Miroslav ;
Oka, Simeon ;
Tucakovic, Dragan .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (19-20) :3371-3378
[10]   Combustion properties of some power station biomass fuels [J].
Darvell, L. I. ;
Jones, J. M. ;
Gudka, B. ;
Baxter, X. C. ;
Saddawi, A. ;
Williams, A. ;
Malmgren, A. .
FUEL, 2010, 89 (10) :2881-2890