Precise Runtime Analysis for Plateaus

被引:11
作者
Antipov, Denis [1 ]
Doerr, Benjamin [2 ]
机构
[1] ITMO Univ, 49 Kronverkskiy Prosp, St Petersburg 197101, Russia
[2] Ecole Polytech, CNRS, Lab Informat LIX, Palaiseau, France
来源
PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XV, PT II | 2018年 / 11102卷
关键词
Runtime analysis; Theory; Markov chains; Mutation; EVOLUTIONARY ALGORITHMS; TIME; COMPLEXITY; CROSSOVER; SEARCH; BOUNDS;
D O I
10.1007/978-3-319-99259-4_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To gain a better theoretical understanding of how evolutionary algorithms cope with plateaus of constant fitness, we analyze how the (1 + 1) EA optimizes the n-dimensional PLATEAU(k) function. This function has a plateau of second-best fitness in a radius of k around the optimum. As optimization algorithm, we regard the (1 + 1) EA using an arbitrary unbiased mutation operator. Denoting by a the random number of bits flipped in an application of this operator and assuming Pr[alpha = 1] = Omega(1), we show the surprising result that for k >= 2 the expected optimization time of this algorithm is n(k)/k!Pr[1 <= alpha <= k] (1 + o(1)). that is, the size of the plateau times the expected waiting time for an iteration flipping between 1 and k bits. Our result implies that the optimal mutation rate for this function is approximately k/en. Our main analysis tool is a combined analysis of the Markov chains on the search point space and on the Hamming level space, an approach that promises to be useful also for other plateau problems.
引用
收藏
页码:117 / 128
页数:12
相关论文
共 26 条
[1]  
[Anonymous], 2008, P 10 ANN C GENETIC E
[2]  
[Anonymous], 2001, Matrix Analysis and Applied Linear Algebra
[3]  
Antipov D., 2018, PRECISE RUNTIME ANAL
[4]  
Böttcher S, 2010, LECT NOTES COMPUT SC, V6238, P1, DOI 10.1007/978-3-642-15844-5_1
[5]   On the Effects of Adding Objectives to Plateau Functions [J].
Brockhoff, Dimo ;
Friedrich, Tobias ;
Hebbinghaus, Nils ;
Klein, Christian ;
Neumann, Frank ;
Zitzler, Eckart .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2009, 13 (03) :591-603
[6]   The Unrestricted Black-Box Complexity of Jump Functions [J].
Buzdalov, Maxim ;
Doerr, Benjamin ;
Kever, Mikhail .
EVOLUTIONARY COMPUTATION, 2016, 24 (04) :719-744
[7]   Runtime Analysis of Non-elitist Populations: From Classical Optimisation to Partial Information [J].
Dang, Duc-Cuong ;
Lehre, Per Kristian .
ALGORITHMICA, 2016, 75 (03) :428-461
[8]   Speeding up evolutionary algorithms through asymmetric mutation operators [J].
Doerr, Benjamin ;
Hebbinghaus, Nils ;
Neumann, Frank .
EVOLUTIONARY COMPUTATION, 2007, 15 (04) :401-410
[9]   Fast Genetic Algorithms [J].
Doerr, Benjamin ;
Huu Phuoc Le ;
Makhmara, Regis ;
Ta Duy Nguyen .
PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'17), 2017, :777-784
[10]   Unbiased Black-Box Complexities of Jump Functions [J].
Doerr, Benjamin ;
Doerr, Carola ;
Koetzing, Timo .
EVOLUTIONARY COMPUTATION, 2015, 23 (04) :641-670