Occasional large emissions of nitrous oxide and methane observed in stormwater biofiltration systems

被引:30
|
作者
Grover, Samantha P. P. [1 ]
Cohan, Amanda [1 ]
Sen Chan, Hon [1 ]
Livesley, Stephen J. [2 ]
Beringer, Jason [3 ,4 ]
Daly, Edoardo [1 ,4 ]
机构
[1] Monash Univ, Dept Civil Engn, Clayton, Vic 3800, Australia
[2] Univ Melbourne, Dept Resource Management & Geog, Richmond, Vic 3121, Australia
[3] Monash Univ, Sch Geog & Environm Sci, Clayton, Vic 3800, Australia
[4] Monash Univ, Monash Water Liveabil, Clayton, Vic 3800, Australia
关键词
Green infrastructure; Water sensitive urban design; Stormwater control measures; Low impact development; Soil greenhouse gas fluxes; Carbon dioxide; POLLUTANT REMOVAL; URBAN FORESTS; BIORETENTION; PERFORMANCE; HYDROLOGY; NUTRIENT; NITRATE; SOILS;
D O I
10.1016/j.scitotenv.2013.01.035
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Designed, green infrastructures are becoming a customary feature of the urban landscape. Sustainable technologies for stormwater management, and biofilters in particular, are increasingly used to reduce stormwater runoff volumes and peaks as well as improve the water quality of runoff discharged into urban water bodies. Although a lot of research has been devoted to these technologies, their effect in terms of greenhouse gas fluxes in urban areas has not been yet investigated. We present the first study aimed at quantifying greenhouse gas fluxes between the soil of stormwater biofilters and the atmosphere. N2O, CH4, and CO2 were measured periodically over a year in two operational vegetated biofiltration cells at Monash University in Melbourne, Australia. One cell had a saturated zone at the bottom, and compost and hardwood mulch added to the sandy loam filter media. The other cell had no saturated zone and was composed of sandy loam. Similar sedges were planted in both cells. The biofilter soil was a small N2O source and a sink for CH4 for most measurement events, with occasional large emissions of both N2O and CH4 under very wet conditions. Average N2O fluxes from the cell with the saturated zone were almost five-fold greater (65.6 mu g N2O N m(-2) h(-1)) than from the other cell (13.7 mu g N2O N m(-2) h(-1)), with peaks up to 1100 mu g N2O N m(-2)h(-1). These N2O fluxes are of similar magnitude to those measured in other urban soils, but with larger peak emissions. The CH4 sink strength of the cell with the saturated zone (-3.8 mu g CH4-C m(-2) h(-1)) was lower than the other cell (-18.3 mu g CH4-C m(-2) h(-1)). Both cells of the biofilter appeared to take up CH4 at similar rates to other urban lawn systems; however, the biofilter cells displayed occasional large CH4 emissions following inflow events, which were not seen in other urban systems. CO2 fluxes increased with soil temperature in both cells, and in the cell without the saturated zone CO2 fluxes decreased as soil moisture increased. Other studies of CO2 fluxes from urban soils have found both similar and larger CO2 emissions than those measured in the biofilter. The results of this study suggest that the greenhouse gas footprint of stormwater treatment warrant consideration in the planning and implementation of engineered green infrastructures. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:64 / 71
页数:8
相关论文
共 50 条
  • [1] Nitrous oxide and methane emissions from soil–plant systems
    G.X. Chen
    G.H. Huang
    B. Huang
    K.W. Yu
    J. Wu
    H. Xu
    Nutrient Cycling in Agroecosystems, 1997, 49 : 41 - 45
  • [2] Nitrous oxide and methane emissions from soil-plant systems
    Chen, GX
    Huang, GH
    Huang, B
    Yu, KW
    Wu, J
    Xu, H
    NUTRIENT CYCLING IN AGROECOSYSTEMS, 1997, 49 (1-3) : 41 - 45
  • [3] Reduction of methane and nitrous oxide emissions from stormwater bioretention cells through microbial electrolytic cells
    Cai, FangYue
    Zuo, XiaoJun
    Xiong, Jie
    Jiang, WeiLi
    BIORESOURCE TECHNOLOGY, 2024, 413
  • [4] METHANE AND NITROUS-OXIDE EMISSIONS - AN INTRODUCTION
    VANAMSTEL, AR
    SWART, RJ
    FERTILIZER RESEARCH, 1994, 37 (03): : 213 - 225
  • [5] Global anthropogenic methane and nitrous oxide emissions
    Scheehle, Elizabeth A.
    Kruger, Dina
    ENERGY JOURNAL, 2006, : 33 - 44
  • [6] Methane, Carbon Dioxide, and Nitrous Oxide Emissions from Septic Tank Systems
    Diaz-Valbuena, Libia R.
    Leverenz, Harold L.
    Cappa, Christopher D.
    Tchobanoglous, George
    Horwath, William R.
    Darby, Jeannie L.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (07) : 2741 - 2747
  • [7] Nitrous oxide and methane emissions from cryptogamic covers
    Lenhart, Katharina
    Weber, Bettina
    Elbert, Wolfgang
    Steinkamp, Joerg
    Clough, Tim
    Crutzen, Paul
    Poeschl, Ulrich
    Keppler, Frank
    GLOBAL CHANGE BIOLOGY, 2015, 21 (10) : 3889 - 3900
  • [8] Methane and Nitrous Oxide Emissions in the Agricultural Sector of Russia
    Romanovskaya, A. A.
    RUSSIAN METEOROLOGY AND HYDROLOGY, 2008, 33 (02) : 117 - 124
  • [9] Production Profile of Farms and Methane and Nitrous Oxide Emissions
    Koloszko-Chomentowska, Zofia
    Sieczko, Leszek
    Trochimczuk, Roman
    ENERGIES, 2021, 14 (16)
  • [10] Methane and nitrous oxide emissions in the agricultural sector of Russia
    A. A. Romanovskaya
    Russian Meteorology and Hydrology, 2008, 33 : 117 - 124