Statistical inversion from reflections of spherical waves by a randomly layered medium

被引:3
作者
Asch, M
Kohler, W
Papanicolaou, G
Postel, M
White, B
机构
[1] Lab. d'Analyse Numérique, Université Paris XI
[2] Department of Mathematics, Virginia Polytech. Inst. State Univ., Blacksburg
[3] Department of Mathematics, Stanford University, Stanford
[4] Lab. d'Analyse Numérique, UPMC et CNRS UA 189
[5] Exxon Res. and Engineering Company, Annandale, NJ 08801
来源
WAVES IN RANDOM MEDIA | 1996年 / 6卷 / 04期
基金
美国国家科学基金会;
关键词
D O I
10.1088/0959-7174/6/4/001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the asymptotic theory developed for the analysis of reflected wave pulses from randomly layered media can be used to solve statistical inverse problems. In particular, we recover the large scale behavior of medium properties from a single realization of reflected wave pulses observed at different points on the surface.
引用
收藏
页码:293 / 334
页数:42
相关论文
共 15 条
[1]  
[Anonymous], 1986, NUMERICAL RECIPES C
[2]   FREQUENCY CONTENT OF RANDOMLY SCATTERED SIGNALS .1. [J].
ASCH, M ;
PAPANICOLAOU, G ;
POSTEL, M ;
SHENG, P ;
WHITE, B .
WAVE MOTION, 1990, 12 (05) :429-450
[3]  
ASCH M, 1991, SIAM REV, V33, P526
[4]   PROBING A RANDOM MEDIUM WITH A PULSE [J].
BURRIDGE, R ;
PAPANICOLAOU, G ;
SHENG, P ;
WHITE, B .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1989, 49 (02) :582-607
[5]   ONE-DIMENSIONAL WAVE-PROPAGATION IN A HIGHLY DISCONTINUOUS MEDIUM [J].
BURRIDGE, R ;
PAPANICOLAOU, GS ;
WHITE, BS .
WAVE MOTION, 1988, 10 (01) :19-44
[6]  
BURRIDGE R, 1996, IN PRESS WAVE MOTION
[7]  
CIARLET PG, 1982, ANAL NUMERIQUE MATRI
[8]  
CLOUET JF, 1996, IN PRESS ANN APPL PR
[9]  
CLOUET JF, 1993, UNPUB WAVE MOTION
[10]  
LEWICKI P, 1996, IN PRESS WAVE MOTION