Multistrain virus dynamics with mutations: a global analysis

被引:35
作者
de Leenheer, Patrick [1 ]
Pilyugin, Sergei S. [1 ]
机构
[1] Univ Florida, Dept Math, Gainesville, FL 32611 USA
来源
MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA | 2008年 / 25卷 / 04期
基金
美国国家科学基金会;
关键词
within-host virus models; mutations; quasispecies; global stability; Lyapunov function;
D O I
10.1093/imammb/dqn023
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider within-host virus models with n >= 2 strains and allow mutation between the strains. If there is no mutation. a Lyapunov function establishes global stability of the steady state corresponding to the fittest strain. For small perturbations, this steady state persists, perhaps with small concentrations of some or all other strains, depending on the connectivity of the graph describing all possible mutations. Moreover, using a Perturbation result due to Smith & Waltman (1999), we show that this steady state also preserves global stability.
引用
收藏
页码:285 / 322
页数:38
相关论文
共 17 条
[11]  
Nowak M.A., 2000, VIRUS DYNAMICS
[12]   Mathematical analysis of HIV-1 dynamics in vivo [J].
Perelson, AS ;
Nelson, PW .
SIAM REVIEW, 1999, 41 (01) :3-44
[13]   Emergence of HIV-1 drug resistance during antiretroviral treatment [J].
Rong, Libin ;
Feng, Zhilan ;
Perelson, Alan S. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2007, 69 (06) :2027-2060
[14]  
Smith H. L., 1994, THEORY CHEMOSTAT DYN
[15]   Perturbation of a globally stable steady state [J].
Smith, HL ;
Waltman, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (02) :447-453
[17]   Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells [J].
Wang, LC ;
Li, MY .
MATHEMATICAL BIOSCIENCES, 2006, 200 (01) :44-57