RBTA: A Multivariate Time-series Method for City Incidents Mining and Forecasting

被引:1
|
作者
Wang, Jieyi [1 ]
Wang, Yongkun [2 ]
Jin, Yaohui [1 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Adv Opt Commun Syst & Network, Shanghai, Peoples R China
[2] Shanghai Jiao Tong Univ, Network & Informat Ctr, Shanghai, Peoples R China
来源
2017 FIFTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA (CBD) | 2017年
关键词
Urban incident; Time-series; Forecast;
D O I
10.1109/CBD.2017.66
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mining and forecasting time-series incidents in large cities is very useful for the administration. However, most of the existing time-series prediction methods use univariate models which ignore the relationship among different city incidents. This paper proposes RBTA, a multivariate time-series model, to find the patterns including basic trend, seasonality, irregular components and relationship among different incidents. We evaluate our model on the real dataset from the downtown area of Shanghai, one the biggest metropolitan of the world. The average forecasting root mean squared error(RMSE) is 0.15, which decreases 4.9% comparing to the best one of the existing methods.
引用
收藏
页码:343 / 348
页数:6
相关论文
共 50 条
  • [1] A Neural Networks Based Method for Multivariate Time-Series Forecasting
    Li, Shaowei
    Huang, He
    Lu, Wei
    IEEE ACCESS, 2021, 9 : 63915 - 63924
  • [2] FORECASTING IN MULTIVARIATE TIME-SERIES - THE MARMA MODEL
    DEFRANK, NMC
    BIOMETRICS, 1985, 41 (04) : 1091 - 1091
  • [3] CONDITIONAL FORECASTING WITH A MULTIVARIATE TIME-SERIES MODEL
    VANDERKNOOP, HS
    ECONOMICS LETTERS, 1986, 22 (2-3) : 233 - 236
  • [4] MULTIVARIATE ARIMA FORECASTING OF IRREGULAR TIME-SERIES
    CHOLETTE, PA
    LAMY, R
    INTERNATIONAL JOURNAL OF FORECASTING, 1986, 2 (02) : 201 - 216
  • [5] Mining and Forecasting of Big Time-series Data
    Sakurai, Yasushi
    Matsubara, Yasuko
    Faloutsos, Christos
    SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 919 - 922
  • [6] Mining and Forecasting of Big Time-series Data
    Sakurai, Yasushi
    2019 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS (PERCOM WORKSHOPS), 2019, : 607 - 607
  • [7] Graph Construction Method for GNN-Based Multivariate Time-Series Forecasting
    Chung, Wonyong
    Moon, Jaeuk
    Kim, Dongjun
    Hwang, Eenjun
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (03): : 5817 - 5836
  • [8] A multivariate heuristic model for fuzzy time-series forecasting
    Huarng, Kun-Huang
    Yu, Tiffany Hui-Kuang
    Hsu, Yu Wei
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2007, 37 (04): : 836 - 846
  • [9] MTSMAE: Masked Autoencoders for Multivariate Time-Series Forecasting
    Tang, Peiwang
    Zhang, Xianchao
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 982 - 989
  • [10] Dimensionality reduction for multivariate time-series data mining
    Wan, Xiaoji
    Li, Hailin
    Zhang, Liping
    Wu, Yenchun Jim
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (07): : 9862 - 9878