On the estimation of ultimate tensile stress from small punch testing

被引:78
作者
Altstadt, E. [1 ]
Houska, M. [1 ]
Simonovski, I. [2 ]
Bruchhausen, M. [2 ]
Holmstrom, S. [2 ]
Lacalle, R. [3 ]
机构
[1] HZDR, Bautzner Landstr 400, D-01328 Dresden, Germany
[2] European Commiss, JRC, Westerduinweg 3, NL-1755 LE Petten, Netherlands
[3] Univ Cantabria, INESCO Ingenieros, Avda Castros, Santander 39005, Spain
关键词
Small punch test; Finite-element analysis; Plasticity; Hardening; Ultimate tensile stress; FRACTURE MODE TRANSITION; MECHANICAL-PROPERTIES; SPECIMEN; STEEL;
D O I
10.1016/j.ijmecsci.2017.12.016
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Finite element simulations of the small punch test are performed in order to critically evaluate and improve empirical correlations for the estimation of the ultimate tensile stress from force-deflection and force-displacement curves. For this purpose, generic elastic-plastic material properties are used. A systematic variation of the ultimate tensile stress and total uniform elongation is performed to investigate the effects of these parameters of the uniaxial stress-strain curve on the characteristics of small punch test curves. It is shown, that the maximum force F-m of the small punch test curve is not the appropriate parameter for the estimation of the ultimate tensile stress. Instead, the force F-i at a punch displacement of 1.29 times the specimen thickness (or alternatively at bottom deflection of 1.1 times the specimen thickness) should be used. This force is associated with the onset of plastic instability. A correlation between the force F-i and the ultimate tensile strength is proposed and validated by more than 100 small punch tests of nine different steel heats. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:85 / 93
页数:9
相关论文
共 34 条
[1]   Identification of ductile damage and fracture parameters from the small punch test using neural networks [J].
Abendroth, M ;
Kuna, M .
ENGINEERING FRACTURE MECHANICS, 2006, 73 (06) :710-725
[2]   Critical evaluation of the small punch test as a screening procedure for mechanical properties [J].
Altstadt, E. ;
Ge, H. E. ;
Kuksenko, V. ;
Serrano, M. ;
Houska, M. ;
Lasan, M. ;
Bruchhausen, M. ;
Lapetite, J. -M. ;
Dai, Y. .
JOURNAL OF NUCLEAR MATERIALS, 2016, 472 :186-195
[3]   Qualification of P91 welds through Small Punch creep testing [J].
Blagoeva, D. ;
Li, Y. Z. ;
Hurst, R. C. .
JOURNAL OF NUCLEAR MATERIALS, 2011, 409 (02) :124-130
[4]   Recent developments in small punch testing: Tensile properties and DBTT [J].
Bruchhausen, M. ;
Holmstrom, S. ;
Simonovski, I. ;
Austin, T. ;
Lapetite, J. -M. ;
Ripplinger, S. ;
de Haan, F. .
THEORETICAL AND APPLIED FRACTURE MECHANICS, 2016, 86 :2-10
[5]   Characterization of plastic deformation in a disk bend test [J].
Byun, TS ;
Lee, EH ;
Hunn, JD ;
Farrell, K ;
Mansur, LK .
JOURNAL OF NUCLEAR MATERIALS, 2001, 294 (03) :256-266
[6]   Assessment of the constitutive properties from small ball punch test:: experiment and modeling [J].
Campitelli, EN ;
Spätig, P ;
Bonadé, R ;
Hoffelner, W ;
Victoria, M .
JOURNAL OF NUCLEAR MATERIALS, 2004, 335 (03) :366-378
[8]   Creep Properties of SUS304 Steel by Small Punch Creep Tests [J].
Chen, Gang ;
Zhai, PengCheng ;
Zhang, QingJie .
MULTISCALE, MULTIFUNCTIONAL AND FUNCTIONALLY GRADED MATERIALS, 2010, 631-632 :387-392
[9]  
Dymacek P, 2013, ACTA METALL SLOVACA, V3
[10]   Creep small-punch testing and its numerical simulations [J].
Dymacek, Petr ;
Milicka, Karel .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 510-11 :444-449