A compact gradient generalized quasi-Einstein metric with constant scalar curvature

被引:34
作者
Barros, A. [1 ]
Gomes, J. N. [1 ,2 ]
机构
[1] Univ Fed Ceara, Dept Matemat, BR-60455760 Fortaleza, Ceara, Brazil
[2] Univ Fed Amazonas, Dept Matemat, BR-69077070 Manaus, Amazonas, Brazil
关键词
Ricci soliton; Quasi-Einstein metrics; Bakry-Emery Ricci tensor; Scalar curvature; MANIFOLDS; RICCI;
D O I
10.1016/j.jmaa.2012.12.068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we shall show that a compact gradient generalized m-quasi-Einstein metric (M-n, g, del f, lambda) with constant scalar curvature must be isometric to a standard Euclidean sphere S-n with the potential f well determined. (C)2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:702 / 705
页数:4
相关论文
共 11 条
[1]   SOME CHARACTERIZATIONS FOR COMPACT ALMOST RICCI SOLITONS [J].
Barros, A. ;
Ribeiro, E., Jr. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (03) :1033-1040
[2]   INTEGRAL FORMULAE ON QUASI-EINSTEIN MANIFOLDS AND APPLICATIONS [J].
Barros, A. ;
Ribeiro, E., Jr. .
GLASGOW MATHEMATICAL JOURNAL, 2012, 54 (01) :213-223
[3]  
Barros A., 2012, B BRAZ MATH IN PRESS
[4]   Complete foliations of space forms by hypersurfaces [J].
Caminha, A. ;
Souza, P. ;
Camargo, F. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2010, 41 (03) :339-353
[5]  
Cao H.-D., 2009, Adv. Lect. Math., V11, P1, DOI 10.48550/arXiv.0908.2006
[6]   Rigidity of quasi-Einstein metrics [J].
Case, Jeffrey ;
Shu, Yu-Jen ;
Wei, Guofang .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (01) :93-100
[7]   THE NONEXISTENCE OF QUASI-EINSTEIN METRICS [J].
Case, Jeffrey S. .
PACIFIC JOURNAL OF MATHEMATICS, 2010, 248 (02) :277-284
[8]   Generalized quasi-Einstein manifolds with harmonic Weyl tensor [J].
Catino, Giovanni .
MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (3-4) :751-756
[9]  
He CX, 2012, COMMUN ANAL GEOM, V20, P271
[10]  
Obata M., 1970, J DIFFER GEOM, V4, P53, DOI DOI 10.4310/JDG/1214429275