A posteriori error estimates for a mixed-FEM formulation of a non-linear elliptic problem

被引:11
作者
Araya, R [1 ]
Barrios, TP [1 ]
Gatica, GN [1 ]
Heuer, N [1 ]
机构
[1] Univ Concepcion, Fac Ciencias Fis & Matemat, Dept Ingn Matemat, GF MA, Concepcion, Chile
关键词
twofold saddle point problem; Raviart Thomas; local problems;
D O I
10.1016/S0045-7825(01)00414-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the numerical solution, via the mixed finite element method, of a non-linear elliptic partial differential equation in divergence form with Dirichlet boundary conditions. Besides the temperature it and the flux a, we introduce Vu as a further unknown, which yields a variational formulation with a twofold saddle point structure. We derive a reliable a posteriori error estimate that depends on the solution of a local linear boundary value problem, which does not need any equilibrium property for its solvability. In addition, for specific finite element subspaces of Raviart-Thomas type we are able to provide a fully explicit a posteriori error estimate that does not require the solution of the local problems. Our approach does not need the exact finite element solution, but any reasonable approximation of it, such as, for instance, the one obtained with a fully discrete Galerkin scheme. In particular, we suggest a scheme that uses quadrature formulas to evaluate all the linear and semi-linear forms involved. Finally, several numerical results illustrate the suitability of the explicit error estimator for the adaptive computation of the corresponding discrete solutions. (C) 2002 Published by Elsevier Science B.V.
引用
收藏
页码:2317 / 2336
页数:20
相关论文
共 28 条
[1]  
Achchab B, 1998, NUMER MATH, V80, P159, DOI 10.1007/s002110050364
[2]   A UNIFIED APPROACH TO A POSTERIORI ERROR ESTIMATION USING ELEMENT RESIDUAL METHODS [J].
AINSWORTH, M ;
ODEN, JT .
NUMERISCHE MATHEMATIK, 1993, 65 (01) :23-50
[3]   A posteriori error estimation in finite element analysis [J].
Ainsworth, M ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 142 (1-2) :1-88
[4]   A posteriori error estimators for the Stokes and Oseen equations [J].
Ainsworth, M ;
Oden, JT .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (01) :228-245
[5]   Error estimators for a mixed method [J].
Alonso, A .
NUMERISCHE MATHEMATIK, 1996, 74 (04) :385-395
[6]   A POSTERIORI ERROR-ESTIMATES BASED ON HIERARCHICAL BASES [J].
BANK, RE ;
SMITH, RK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (04) :921-935
[7]  
BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X
[8]  
BARRIENTOS MA, NUMER MATH, DOI DOI 10.1007/S00210100337
[9]  
BOROUCHAKI H, 1996, 0194 INRIA
[10]   Posteriori error estimators for the Raviart-Thomas element [J].
Braess, D ;
Verfurth, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (06) :2431-2444