An intrinsic approach to manifold constrained variational problems

被引:7
作者
Focardi, Matteo [1 ]
Spadaro, Emanuele [2 ]
机构
[1] Univ Florence, Florence, Italy
[2] Hausdorff Ctr Math, Bonn, Germany
关键词
Lower semicontinuity; Quasi convexity; Manifold constraints; Metric space valued Sobolev maps; SOBOLEV-TYPE CLASSES; HARMONIC MAPS; METRIC SPACE; VALUES; SEMICONTINUITY; REGULARITY;
D O I
10.1007/s10231-011-0216-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by some questions in continuum mechanics and analysis in metric spaces, we give an intrinsic characterization of sequentially weak lower semicontinuous functionals defined on Sobolev maps with values into manifolds without embedding the target into Euclidean spaces.
引用
收藏
页码:145 / 163
页数:19
相关论文
共 39 条
[1]   SEMICONTINUITY PROBLEMS IN THE CALCULUS OF VARIATIONS [J].
ACERBI, E ;
FUSCO, N .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1984, 86 (02) :125-145
[2]  
Ambrosio L., 1990, ANN SCUOLA NORM SU S, V17, P439
[3]  
[Anonymous], 1966, GRUNDLEHREN MATH WIS
[4]  
[Anonymous], 1998, ERGEBNISSE MATH IHRE
[5]   Orientable and Non-Orientable Line Field Models for Uniaxial Nematic Liquid Crystals [J].
Ball, John M. ;
Zarnescu, Arghir .
MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2008, 495 :573-585
[6]   HARMONIC MAPS WITH DEFECTS [J].
BREZIS, H ;
CORON, JM ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 107 (04) :649-705
[7]  
CAPRIZ G, 1989, SPRINGER TRACTS NATU, V35
[8]  
Charles B., 1952, PAC J MATH, V2, P25, DOI DOI 10.2140/PJM.1952.2.25)
[9]   On the definitions of Sobolev and BV spaces into singular spaces and the trace problem [J].
Chiron, David .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2007, 9 (04) :473-513
[10]   Manifold constrained variational problems [J].
Dacorogna, B ;
Fonseca, I ;
Maly, J ;
Trivisa, K .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1999, 9 (03) :185-206