Multi-parametric MRI-based radiomics signature for discriminating between clinically significant and insignificant prostate cancer: Cross-validation of a machine learning method

被引:105
作者
Min, Xiangde [1 ]
Li, Min [2 ]
Dong, Di [3 ,4 ]
Feng, Zhaoyan [1 ]
Zhang, Peipei [1 ]
Ke, Zan [1 ]
You, Huijuan [1 ]
Han, Fangfang [2 ]
Ma, He [2 ]
Tian, Jie [3 ,4 ,5 ]
Wang, Liang [1 ]
机构
[1] Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Dept Radiol, 1095 Jie Fang Ave, Wuhan 430030, Hubei, Peoples R China
[2] Northeastern Univ, Sino Dutch Biomed & Informat Engn Sch, Shenyang, Liaoning, Peoples R China
[3] Chinese Acad Sci, Inst Automat, CAS Key Lab Mol Imaging, Beijing, Peoples R China
[4] Univ Chinese Acad Sci, Beijing, Peoples R China
[5] Beihang Univ, Sch Med, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing, Peoples R China
基金
北京市自然科学基金; 国家重点研发计划; 中国国家自然科学基金;
关键词
Magnetic resonance imaging; Prostatic neoplasms; Neoplasm grading; Radiomics; OVERDIAGNOSIS; EXPERIENCE; FEATURES; RISK;
D O I
10.1016/j.ejrad.2019.03.010
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To evaluate the performance of a multi-parametric MRI (mp-MRI)-based radiomics signature for discriminating between clinically significant prostate cancer (csPCa) and insignificant PCa (ciPCa). Materials and methods: Two hundred and eighty patients with pathology-proven PCa were enrolled and were randomly divided into training and test cohorts. Eight hundred and nineteen radiomics features were extracted from mp-MRI for each patient. The minority group in the training cohort was balanced via the synthetic minority over-sampling technique (SMOTE) method. We used minimum-redundancy maximum-relevance (mRMR) selection and the LASSO algorithm for feature selection and radiomics signature building. The classification performance of the radiomics signature for csPCa and ciPCa was evaluated by receiver operating characteristic curve analysis in the training and test cohorts. Results: Nine features were selected for the radiomics signature building. Significant differences in the radiomics signature existed between the csPCa and ciPCa groups in both the training and test cohorts (p < 0.01 for both). The AUC, sensitivity and specificity of the radiomics signature were 0.872 (95% CI: 0.823-0.921), 0.883, and 0.753, respectively, in the training cohort, and 0.823 (95% CI: 0.669-0.976), 0.841, and 0.727, respectively, in the test cohort. Conclusion: Mp-MRI-based radiomics signature have the potential to noninvasively discriminate between csPCa and ciPCa.
引用
收藏
页码:16 / 21
页数:6
相关论文
共 27 条
[1]   Highly efficient carrier multiplication in PbS nanosheets [J].
Aerts, Michiel ;
Bielewicz, Thomas ;
Klinke, Christian ;
Grozema, Ferdinand C. ;
Houtepen, Arjan J. ;
Schins, Juleon M. ;
Siebbeles, Laurens D. A. .
NATURE COMMUNICATIONS, 2014, 5
[2]   Radiomic Features on MRI Enable Risk Categorization of Prostate Cancer Patients on Active Surveillance: Preliminary Findings [J].
Algohary, Ahmad ;
Viswanath, Satish ;
Shiradkar, Rakesh ;
Ghose, Soumya ;
Pahwa, Shivani ;
Moses, Daniel ;
Jambor, Ivan ;
Shnier, Ronald ;
Bohm, Maret ;
Haynes, Anne-Maree ;
Brenner, Phillip ;
Delprado, Warick ;
Thompson, James ;
Pulbrock, Marley ;
Purysko, Andrei S. ;
Verma, Sadhna ;
Ponsky, Lee ;
Stricker, Phillip ;
Madabhushi, Anant .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 48 (03) :818-828
[3]  
[Anonymous], J CLIN ONCOL
[4]  
[Anonymous], J MAGN RESON IMAGING
[5]   Diffusion-Weighted Magnetic Resonance Imaging Detects Significant Prostate Cancer with High Probability [J].
Bains, Lauren J. ;
Studer, Urs E. ;
Froehlich, Johannes M. ;
Giannarini, Gianluca ;
Triantafyllou, Maria ;
Fleischmann, Achim ;
Thoenyt, Harriet C. .
JOURNAL OF UROLOGY, 2014, 192 (03) :737-742
[6]   Radiomics Based on Adapted Diffusion Kurtosis Imaging Helps to Clarify Most Mammographic Findings Suspicious for Cancer [J].
Bickelhaupt, Sebastian ;
Jaeger, Paul Ferdinand ;
Laun, Frederik Bernd ;
Lederer, Wolfgang ;
Daniel, Heidi ;
Kuder, Tristan Anselm ;
Wuesthof, Lorenz ;
Paech, Daniel ;
Bonekamp, David ;
Radbruch, Alexander ;
Delorme, Stefan ;
Schlemmer, Heinz-Peter ;
Steudle, Franziska Hildegard ;
Maier-Hein, Klaus Hermann .
RADIOLOGY, 2018, 287 (03) :761-770
[7]   Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer [J].
Dong, D. ;
Tang, L. ;
Li, Z. -Y ;
Fang, M-J ;
Gao, J-B ;
Shan, X-H ;
Ying, X-J ;
Sun, Y-S ;
Fu, J. ;
Wang, X-X ;
Li, L-M ;
Li, Z-H ;
Zhang, D-F ;
Zhang, Y. ;
Li, Z-M ;
Shan, F. ;
Bu, Z-D ;
Tian, J. ;
Ji, J-F .
ANNALS OF ONCOLOGY, 2019, 30 (03) :431-438
[8]   Lead Time and Overdiagnosis in Prostate-Specific Antigen Screening: Importance of Methods and Context [J].
Draisma, Gerrit ;
Etzioni, Ruth ;
Tsodikov, Alex ;
Mariotto, Angela ;
Wever, Elisabeth ;
Gulati, Roman ;
Feuer, Eric ;
de Koning, Harry .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2009, 101 (06) :374-383
[9]   Radiomics in paediatric neuro-oncology: A multicentre study on MRI texture analysis [J].
Fetit, Ahmed E. ;
Novak, Jan ;
Rodriguez, Daniel ;
Auer, Dorothee P. ;
Clark, Christopher A. ;
Grundy, Richard G. ;
Peet, Andrew C. ;
Arvanitis, Theodoros N. .
NMR IN BIOMEDICINE, 2018, 31 (01)
[10]   Radiomic features for prostate cancer detection on MRI differ between the transition and peripheral zones: Preliminary findings from a multi-institutional study [J].
Ginsburg, Shoshana B. ;
Algohary, Ahmad ;
Pahwa, Shivani ;
Gulani, Vikas ;
Ponsky, Lee ;
Aronen, Hannu J. ;
Bostrom, Peter J. ;
Bohm, Maret ;
Haynes, Anne-Maree ;
Brenner, Phillip ;
Delprado, Warick ;
Thompson, James ;
Pulbrock, Marley ;
Taimen, Pekka ;
Villani, Robert ;
Stricker, Phillip ;
Rastinehad, Ardeshir R. ;
Jambor, Ivan ;
Madabhushi, Anant .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2017, 46 (01) :184-193