Optimal spectral rectangles and lattice ellipses

被引:25
作者
Antunes, Pedro R. S. [1 ,2 ]
Freitas, Pedro [2 ,3 ]
机构
[1] Univ Lusofona Humanidades & Tecnol, Dept Math, P-1749024 Lisbon, Portugal
[2] Univ Lisbon, Grp Math Phys, P-1649003 Lisbon, Portugal
[3] Univ Tecn Lisboa, Human Kinet Fac, Dept Math, P-1495688 Cruz Quebrada, Cruz Quebrada D, Portugal
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2013年 / 469卷 / 2150期
关键词
eigenvalues; Laplacian; lattice points; FABER-KRAHN INEQUALITY; ISOPERIMETRIC INEQUALITY; BOUNDARY-CONDITIONS; EIGENVALUE PROBLEM; DOMAINS; PLANAR; OPTIMIZATION; MINIMIZATION; DIRICHLET; LAPLACIAN;
D O I
10.1098/rspa.2012.0492
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider the problem of minimizing the kth eigenvalue of rectangles with unit area and Dirichlet boundary conditions. This problem corresponds to finding the ellipse centred at the origin with axes on the horizontal and vertical axes with the smallest area containing k integer lattice points in the first quadrant. We show that, as k goes to infinity, the optimal rectangle approaches the square and, correspondingly, the optimal ellipse approaches the circle. We also provide a computational method for determining optimal rectangles for any k and relate the rate of convergence to the square with the conjectured error term for Gauss's circle problem.
引用
收藏
页数:15
相关论文
共 30 条
[1]  
[Anonymous], PREPRINT
[2]   Numerical Optimization of Low Eigenvalues of the Dirichlet and Neumann Laplacians [J].
Antunes, Pedro R. S. ;
Freitas, Pedro .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 154 (01) :235-257
[3]  
Antunes PRS, 2012, ASYMPTOTIC BEHAV NUM
[4]  
Berezin FA, 1972, IZVEZ AKAD NAUK SS M, V36, P1134
[5]  
BOSSEL MH, 1986, CR ACAD SCI I-MATH, V302, P47
[6]   Sharp estimates and saturation phenomena for a nonlocal eigenvalue problem [J].
Brandolini, B. ;
Freitas, P. ;
Nitsch, C. ;
Trombetti, C. .
ADVANCES IN MATHEMATICS, 2011, 228 (04) :2352-2365
[7]   Minimization of the k-th eigenvalue of the Dirichlet Laplacian [J].
Bucur, Dorin .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 206 (03) :1073-1083
[8]   A Faber-Krahn inequality for Robin problems in any space dimension [J].
Daners, D .
MATHEMATISCHE ANNALEN, 2006, 335 (04) :767-785
[9]  
Faber G., 1923, Sitz. Bayer Acad. Wiss., P169
[10]  
Freitas P, 2004, COMMUN ANAL GEOM, V12, P1083