On the absolutely continuous spectrum of one-dimensional Schrodinger operators with square summable potentials

被引:140
作者
Deift, P
Killip, R
机构
[1] NYU, Courant Inst, New York, NY 10012 USA
[2] CALTECH, Pasadena, CA 91125 USA
关键词
D O I
10.1007/s002200050615
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For continuous and discrete one-dimensional Schrodinger operators with square summable potentials, the absolutely continuous part of the spectrum is essentially supported by [0, infinity) and [-2, 2] respectively. This fact is proved by considering a priori estimates for the transmission coefficient.
引用
收藏
页码:341 / 347
页数:7
相关论文
共 13 条
[1]  
Christ M, 1997, MATH RES LETT, V4, P719
[2]   Absolutely continuous spectrum for one-dimensional Schrodinger operators with slowly decaying potentials: Some optimal results [J].
Christ, M ;
Kiselev, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 11 (04) :771-797
[3]  
CODDINGTON EA, 1955, THEORY ORDINARY DIFF, V16, pB1022
[4]  
Faddeev L.D., 1987, Hamiltonian Methods in the Theory of Solitons
[5]   m-functions and inverse spectral analysis for finite and semi-infinite Jacobi matrices [J].
Gesztesy, F ;
Simon, B .
JOURNAL D ANALYSE MATHEMATIQUE, 1997, 73 :267-297
[6]  
KATO T, 1995, PERTURBATION THEORY, V96, P47025
[7]   Modified Prufer and EFGP transforms and the spectral analysis of one-dimensional Schrodinger operators [J].
Kiselev, A ;
Last, Y ;
Simon, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 194 (01) :1-45
[8]   DENSE POINT SPECTRA OF SCHRODINGER AND DIRAC OPERATORS [J].
NABOKO, SN .
THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 68 (01) :646-653
[9]  
Reed M., 1975, Fourier Analysis, Self-Adjointness
[10]  
REED M., 1979, Methods of Modern Mathematical Physics