Highly efficient organic light-emitting diodes from delayed fluorescence

被引:6453
|
作者
Uoyama, Hiroki [1 ]
Goushi, Kenichi [1 ,2 ]
Shizu, Katsuyuki [1 ]
Nomura, Hiroko [1 ]
Adachi, Chihaya [1 ,2 ]
机构
[1] Kyushu Univ, Ctr Organ Photon & Elect Res, Nishi Ku, Fukuoka 8190395, Japan
[2] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, Nishi Ku, Fukuoka 8190395, Japan
关键词
EXCITON FORMATION; ELECTROLUMINESCENCE; SINGLET; STATES;
D O I
10.1038/nature11687
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The inherent flexibility afforded by molecular design has accelerated the development of a wide variety of organic semiconductors over the past two decades. In particular, great advances have been made in the development of materials for organic light-emitting diodes (OLEDs), from early devices based on fluorescent molecules(1) to those using phosphorescent molecules(2,3). In OLEDs, electrically injected charge carriers recombine to form singlet and triplet excitons in a 1:3 ratio(1); the use of phosphorescent metal-organic complexes exploits the normally non-radiative triplet excitons and so enhances the overall electroluminescence efficiency(2,3). Here we report a class of metal-free organic electroluminescent molecules in which the energy gap between the singlet and triplet excited states is minimized by design(4), thereby promoting highly efficient spin up-conversion from non-radiative triplet states to radiative singlet states while maintaining high radiative decay rates, of more than 10(6) decays per second. In other words, these molecules harness both singlet and triplet excitons for light emission through fluorescence decay channels, leading to an intrinsic fluorescence efficiency in excess of 90 per cent and a very high external electroluminescence efficiency, of more than 19 per cent, which is comparable to that achieved in high-efficiency phosphorescence-based OLEDs(3).
引用
收藏
页码:234 / +
页数:7
相关论文
共 50 条
  • [1] Highly efficient organic light-emitting diodes from delayed fluorescence
    Hiroki Uoyama
    Kenichi Goushi
    Katsuyuki Shizu
    Hiroko Nomura
    Chihaya Adachi
    Nature, 2012, 492 : 234 - 238
  • [2] Isomeric thermally activated delayed fluorescence emitters for highly efficient organic light-emitting diodes
    Liu, Yanyan
    Yang, Jiaji
    Mao, Zhu
    Wang, Yuyuan
    Zhao, Juan
    Su, Shi-Jian
    Chi, Zhenguo
    CHEMICAL SCIENCE, 2023, 14 (06) : 1551 - 1556
  • [3] Highly efficient inverted organic light-emitting diodes based on thermally activated delayed fluorescence
    Lv, Xiaopeng
    Wang, Hui
    Meng, Lingqiang
    Wei, Xiaofang
    Chen, Yongzhen
    Kong, Xiangbin
    Liu, Jianjun
    Tang, Jianxin
    Wang, Pengfei
    Wang, Ying
    SCIENCE CHINA-MATERIALS, 2016, 59 (06) : 421 - 426
  • [4] A Novel Yellow Thermally Activated Delayed Fluorescence Emitter For Highly Efficient Organic Light-Emitting Diodes
    Wang Zhiqiang
    Cai Jialin
    Zhang Ming
    Zheng Caijun
    Ji Baoming
    ACTA CHIMICA SINICA, 2019, 77 (03) : 263 - 268
  • [5] Highly efficient full -fluorescence organic light-emitting diodes with exciplex cohosts
    Li, Hejun
    Xie, Ning
    Wang, Jiaxuan
    Zhao, Yuguang
    Liang, Baoyan
    ORGANIC ELECTRONICS, 2021, 88
  • [6] Highly efficient and stable organic light-emitting diodes
    Vestweber, H
    Riess, W
    SYNTHETIC METALS, 1997, 91 (1-3) : 181 - 185
  • [7] Highly efficient exciplex organic light-emitting diodes by exciplex dispersion in the thermally activated delayed fluorescence host
    Jeon, Sang Kyu
    Lee, Jun Yeob
    ORGANIC ELECTRONICS, 2020, 76
  • [8] Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes
    Adachi, Chihaya
    Zysman-Colman, Eli
    JOURNAL OF PHOTONICS FOR ENERGY, 2018, 8 (03):
  • [9] Quinoxaline-based thermally activated delayed fluorescence emitters for highly efficient organic light-emitting diodes
    Li, Xiaoning
    Chen, Yi
    Li, Shuhui
    Li, Aisen
    Tu, Liangjing
    Zhang, Dongdong
    Duan, Lian
    Xie, Yujun
    Tang, Ben Zhong
    Li, Zhen
    JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (15) : 5217 - 5224
  • [10] Zinc complexes exhibiting highly efficient thermally activated delayed fluorescence and their application to organic light-emitting diodes
    Sakai, Yumi
    Sagara, Yuta
    Nomura, Hiroko
    Nakamura, Nozomi
    Suzuki, Yoshitake
    Miyazaki, Hiroshi
    Adachi, Chihaya
    CHEMICAL COMMUNICATIONS, 2015, 51 (15) : 3181 - 3184