Microwave -activated structured reactors to maximize propylene selectivity in the oxidative dehydrogenation of propane

被引:50
|
作者
Ramirez, Adrian [1 ,2 ,5 ]
Hueso, Jose L. [1 ,2 ,3 ,4 ]
Mallada, Reyes [1 ,2 ,3 ,4 ]
Santamaria, Jesus [1 ,2 ,3 ,4 ]
机构
[1] Univ Zaragoza, Inst Nanosci Aragon, C Mariano Esquillor S-N, Zaragoza 50018, Spain
[2] Univ Zaragoza, Dept Chem & Environm Engn, C Mariano Esquillor S-N, Zaragoza 50018, Spain
[3] Networking Res Ctr Bioengn Biomat & Nanomed CIBER, Madrid 28029, Spain
[4] Univ Zaragoza, Consejo Super Invest Cient CSIC, Inst Ciencia Mat Aragon ICMA, Zaragoza, Spain
[5] King Abdullah Univ Sci & Technol KAUST, Thuwal 23955, Saudi Arabia
基金
欧洲研究理事会;
关键词
PROMOTED MAGNESIA CATALYST; VANADIA CATALYSTS; HEAT-TRANSFER; HOT-SPOTS; OXIDE; ALKANES; ETHANE; GENERATION; CONVERSION; MONOLITHS;
D O I
10.1016/j.cej.2020.124746
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microwave (MW) heating has been applied to increase the selectivity to propylene in the oxidative dehydrogenation (ODH) of propane. The preferential heating of the solid monolith (made of SiC, a good microwave susceptor), allows working with a lower gas phase temperature, reducing the formation of undesired by-products in the gas phase via homogeneous reactions. Conversion levels of ~ 21% and selectivity to propylene up to 70% have been achieved with MW-heated straight channel monolithic reactors coated with a VMgO catalyst. These competitive values contrast with the more limited performance delivered by the same catalytic system when it is subjected to conventional heating in a fixed-bed reactor configuration, thereby corroborating the advantage of working under a significant gas–solid temperature gap to minimize the extent of homogeneous reactions. © 2020 Elsevier B.V.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Downer fluidized bed reactor modeling for catalytic propane oxidative dehydrogenation with high propylene selectivity
    Rostom, S.
    de Lasa, H.
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2019, 137 : 87 - 99
  • [2] Boosting the propylene selectivity over embryonic borosilicate zeolite catalyst for oxidative dehydrogenation of propane
    Qiu, Bin
    Lu, Wen -Duo
    Gao, Xin-Qian
    Sheng, Jian
    Ji, Min
    Wang, Dongqi
    Lu, An -Hui
    JOURNAL OF CATALYSIS, 2023, 417 : 14 - 21
  • [3] High Propylene Selectivity via Propane Oxidative Dehydrogenation Using a Novel Fluidizable Catalyst: Kinetic Modeling
    Rostom, S.
    de Lasa, H.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (31) : 10251 - 10260
  • [4] Advancements of MOFs in the Field of Propane Oxidative Dehydrogenation for Propylene Production
    Li, Shu-Ting
    Ke, Ming
    Zhang, Jie
    Peng, Yun-Lei
    Chen, Guangjin
    MOLECULES, 2024, 29 (06):
  • [5] Catalyst development for O2-assisted oxidative dehydrogenation of propane to propylene
    Liu, Huimin
    Sun, Shaoyuan
    Li, Dezheng
    Lei, Yiming
    CHEMICAL COMMUNICATIONS, 2024, 60 (59) : 7535 - 7554
  • [6] Photothermal oxidative dehydrogenation of propane to propylene over Cu/BN catalysts
    Sun, Shaoyuan
    Zhao, Manqi
    Liu, Huimin
    Li, Dezheng
    Lei, Yiming
    FRONTIERS IN CHEMISTRY, 2024, 12
  • [7] Theoretical Investigations of (Oxidative) Dehydrogenation of Propane to Propylene over Palladium Surfaces
    Araujo-Lopez, Eduard
    Joos, Lennart
    Vandegehuchte, Bart D.
    Sharapa, Dmitry I.
    Studt, Felix
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (05) : 3171 - 3176
  • [8] Boron-hyperdoped silicon for the selective oxidative dehydrogenation of propane to propylene
    Chen, Junjie
    Rohani, Parham
    Karakalos, Stavros G.
    Lance, Michael J.
    Toops, Todd J.
    Swihart, Mark T.
    Kyriakidou, Eleni A.
    CHEMICAL COMMUNICATIONS, 2020, 56 (68) : 9882 - 9885
  • [9] Analysis of Membrane Reactors for Integrated Coupling of Oxidative and Thermal Dehydrogenation of Propane
    Brune, Andreas
    Wolff, Tanya
    Seidel-Morgenstern, Andreas
    Hamel, Christof
    CHEMIE INGENIEUR TECHNIK, 2019, 91 (05) : 645 - 650
  • [10] Balancing the Activity and Selectivity of Propane Oxidative Dehydrogenation on NiOOH (001) and (010)
    Li, Lisheng
    Wang, Hua
    Han, Jinyu
    Zhu, Xinli
    Ge, Qingfeng
    TRANSACTIONS OF TIANJIN UNIVERSITY, 2020, 26 (05) : 341 - 351